...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Molecular investigation of the wettability of rough surfaces using molecular dynamics simulation
【24h】

Molecular investigation of the wettability of rough surfaces using molecular dynamics simulation

机译:用分子动力学模拟对粗糙表面润湿性的分子研究

获取原文
获取原文并翻译 | 示例
           

摘要

In the present study, a computational investigation on the effect of surface roughness on the wettability behavior of water nanodroplets has been performed via molecular dynamics simulation. To fabricate the roughness, several grooves with different depths and widths were considered on the top layer(s) of graphite. Free energy analysis indicates that surface roughness reduces the solid–liquid adhesion and the work done for the removal of the nanodroplet from the solid surface. This reduction increases with an increase in both the depth and width of the grooves. Furthermore, the adhesion in Wenzel state is greater than that in the Cassie–Baxter state. Results show that increasing the depth and decreasing the width of the grooves decrease the wettability and the nanodroplet locates in the Cassie–Baxter state. In addition, both the Cassie–Baxter and Wenzel models effectively predict the nanodroplet contact angle on the rough surfaces. Furthermore, the probability of successful interactions decreases in the solid–liquid interfaces due to the heterogeneity of the surface. Therefore, the density, the residence time and the hydrogen bond lifetime of the water molecules in the layer in the vicinity of the substrate decrease. In addition, surface roughness affects the orientation of the water molecules at the interface, the diffusion of water molecules as well as the movement of the water nanodroplet.
机译:在本研究中,通过分子动力学模拟进行了对表面粗糙度对水纳米辊润湿性行为的计算研究。为了制造粗糙度,在石墨的顶层上考虑具有不同深度和宽度的几个凹槽。自由能量分析表明表面粗糙度降低了用于从固体表面去除纳米射线的固体粘附和完成的工作。这种减小随着凹槽的深度和宽度的增加而增加。此外,温革型状态的粘附性大于卡西 - 巴克斯特状态。结果表明,增加深度和降低凹槽的宽度降低了润湿性,并且在卡西 - 爆炸状态下定位纳米射线。另外,Cassie-Baxter和Wenzel模型都有效地预测粗糙表面上的纳米射线接触角。此外,由于表面的异质性,成功相互作用的概率减小了固体液体界面。因此,在基板附近的层中的密度,停留时间和水分子的氢键寿命减小。此外,表面粗糙度影响界面处的水分子的取向,水分子的扩散以及水纳米射线的运动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号