...
首页> 外文期刊>Physica, B. Condensed Matter >Charge compensation mechanisms in favor of the incorporation of the Eu3+ ion into the ZnO host lattice
【24h】

Charge compensation mechanisms in favor of the incorporation of the Eu3+ ion into the ZnO host lattice

机译:充电补偿机制,有利于将EU3 +离子掺入ZnO宿主格子中

获取原文
获取原文并翻译 | 示例
           

摘要

Eu3+ doped phosphors with charge compensation are potential candidates of red emitting phosphors for lamp applications. Charge compensation improves the luminescence performance of the material. The charge compensation can most probably be achieved by three possible mechanisms: (a) two Zn2+ ions are replaced by one Eu3+ ions and one monovalent cation, 2Zn(2+) - Eu3++ Li+, where Li+ is acting as a charge compensator; (b) the charge compensation is provided by a zinc vacancy (V-Zn) defects, 3Zn(2+) - 2Eu(3+)+ V-Zn, the subscript Zn denotes an ion in a normal zinc site in the lattice; (c) two Zn2+ ions are replaced by one Eu3+ ions with the presence of interstitial oxygen (O-i), 2Zn(2+) - 2Eu(3+)+ O-i. Electronic structures of the crystals corresponding to the three models are evaluated by the first-principles quantum mechanical calculations based on the density functional theory. It is found that the charge compensator defects make Eu3+ doping in ZnO energetically more favorable. They break the local symmetry around the Eu3+ ion and lead to deep states below the empty upper band, the conduction band that could facilitate intra-4f shell transitions, which can obviously improve the emission intensity of Eu3+-doped ZnO. Therefore, the effect of these defects on the host crystals electronic band states relative to the Eu3+ states is reported, since both electron transfer and electronically energy transfer processes enhance the performance of optoelectronic devices based on this material. These theoretical insights are helpful for designing rare-earth doped oxide materials with high photoluminescence (PL) performance.
机译:欧盟+掺杂电荷补偿的磷光体是用于灯应用的红色发光磷光体的潜在候选者。电荷补偿改善了材料的发光性能。电荷补偿最有可能通过三种可能的机制实现:(a)两种Zn2 +离子被一个Eu3 +离子和一种单价阳离子,2zn(2+) - & eu3 ++ li +,Li +充当充电补偿器; (b)电荷补偿由锌空位(V-Zn)缺陷提供,3zn(2+) - & 2EU(3 +)+ V-Zn,下标Zn表示晶格中正常锌位点的离子; (c)两种Zn2 +离子被一个Eu3 +离子取代,含有间质氧(O-1),2℃(2+) - & 2EU(3 +)+ O-I。基于密度泛函理论,通过第一原理量子力学计算评估对应于三种模型的晶体的电子结构。结果发现,充电补偿器缺陷使EU3 +掺杂在ZnO中能够大大有利。它们在EU3 +离子周围打破了局部对称性,导致空的上部带下方的深处状态,导电带可以促进4F壳体过渡的导电带,这明显提高了Eu3 +掺杂ZnO的发射强度。因此,报道了这些缺陷对主晶体电子带状态相对于EU3 +状态的影响,因为电子传递和电子能传输过程都提高了基于该材料的光电器件的性能。这些理论洞察力有助于设计具有高光致发光(PL)性能的稀土掺杂氧化物材料。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号