...
首页> 外文期刊>Physics of fluids >A unified analysis of nano-to-microscale particle dispersion in tubular blood flow
【24h】

A unified analysis of nano-to-microscale particle dispersion in tubular blood flow

机译:管状血流中纳米微粒粒子分散体的统一分析

获取原文
获取原文并翻译 | 示例
           

摘要

Transport of solid particles in blood flow exhibits qualitative differences in the transport mechanism when the particle varies from nanoscale to microscale size comparable to the red blood cell (RBC). The effect of microscale particle margination has been investigated by several groups. Also, the transport of nanoscale particles (NPs) in blood has received considerable attention in the past. This study attempts to bridge the gap by quantitatively showing how the transport mechanism varies with particle size from nano-to-microscale. Using a three-dimensional (3D) multiscale method, the dispersion of particles in microscale tubular flows is investigated for various hematocrits, vessel diameters, and particle sizes. NPs exhibit a nonuniform, smoothly dispersed distribution across the tube radius due to severe Brownian motion. The near-wall concentration of NPs can be moderately enhanced by increasing hematocrit and confinement. Moreover, there exists a critical particle size (similar to 1 mu m) that leads to excessive retention of particles in the cell-free region near the wall, i.e., margination. Above this threshold, the margination propensity increases with the particle size. The dominance of RBC-enhanced shear-induced diffusivity (RESID) over Brownian diffusivity (BD) results in 10 times higher radial diffusion rates in the RBC-laden region compared to that in the cell-free layer, correlated with the high margination propensity of microscale particles. This work captures the particle size-dependent transition from Brownian-motion dominant dispersion to margination using a unified 3D multiscale computational approach and highlights the linkage between the radial distribution of RESID and the margination of particles in confined blood flows. Published under license by AIP Publishing.
机译:当颗粒从纳米级变化到与红细胞(RBC)相当的微尺度尺寸时,血流中固体颗粒在血流中的运输表现出定性差异。几个组研究了微观粒子边距的效果。而且,血液中纳米级粒子(NPS)的运输在过去已经得到了相当大的关注。该研究试图通过定量表明传送机制如何随纳米至微尺寸而变化的方式来弥合差距。使用三维(3D)多尺度方法,研究了微观管状流动中的颗粒的分散针对各种血细胞,血管直径和颗粒尺寸研究。由于严重的布朗运动,NPS在管半径上表现出不均匀的分散的分布。通过增加血细胞比容和限制,可以中度增强NPS的近壁浓度。此外,存在临界粒度(类似于1μm),其导致过度保留在壁附近的无细胞区域中的颗粒,即边距。高于该阈值,利用粒径增加。 RBC增强的剪切诱导的扩散性(RENCE)在褐色扩散率(BD)上的优势导致RBC-升起区域中的径向扩散速率较高的10倍,与细胞层中的升高的升高,与高度的远程倾向相关微观粒子。这项工作捕获了使用统一的3D多尺度计算方法从布朗运动显性色散到边距的粒度依赖性转变,并突出探测器径向分布与限制血液中颗粒的拉伸之间的连杆。通过AIP发布在许可证下发布。

著录项

  • 来源
    《Physics of fluids》 |2019年第8期|共11页
  • 作者单位

    Georgia Inst Technol George W Woodruff Sch Mech Engn Atlanta GA 30332 USA;

    Sandia Natl Labs Albuquerque NM 87185 USA;

    Sandia Natl Labs Albuquerque NM 87185 USA;

    Georgia Inst Technol George W Woodruff Sch Mech Engn Atlanta GA 30332 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 流体力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号