首页> 外文期刊>Physics of fluids >Wall-modeled large-eddy simulations of spanwise rotating turbulent channels-Comparing a physics-based approach and a data-based approach
【24h】

Wall-modeled large-eddy simulations of spanwise rotating turbulent channels-Comparing a physics-based approach and a data-based approach

机译:墙面旋转湍流通道的壁图大型涡流 - 比较基于物理的方法和基于数据的方法

获取原文
获取原文并翻译 | 示例
           

摘要

We develop wall modeling capabilities for large-eddy simulations (LESs) of channel flow subjected to spanwise rotation. The developed models are used for flows at various Reynolds numbers and rotation numbers, with different grid resolutions and in differently sized computational domains. We compare a physics-based approach and a data-based machine learning approach. When pursuing a data-based approach, we use the available direct numerical simulation data as our training data. We highlight the difference between LES wall modeling, where one writes all flow quantities in a coordinate defined by the wall-normal direction and the near-wall flow direction, and Reynolds-averaged Navier-Stokes modeling, where one writes flow quantities in tensor forms. Pursuing a physics-based approach, we account for system rotation by reformulating the eddy viscosity in the wall model. Employing the reformulated eddy viscosity, the wall model is able to predict the mean flow correctly. Pursuing a data-based approach, we train a fully connected feed-forward neural network (FNN). The FNN is informed about our knowledge (although limited) on the mean flow. We then use the trained FNNs as wall models in wall modeled LES (WMLES) and show that it predicts the mean flow correctly. While it is not the focus of this study, special attention is paid to the problem of log-layer mismatch, which is common in WMLES. Our study shows that log-layer mismatch, or rather, linear-layer mismatch in WMLES of spanwise rotating channels, is not present at high rotation numbers, even when the wall-model/LES matching location is at the first grid point.
机译:我们开发对经受翼展方向旋转信道流的大涡模拟(减少)的壁的建模能力。建立的模型用于在不同的雷诺数和旋转的数字流,以不同的网格分辨率和不同大小的计算域。我们比较基于物理的方法和基于数据的机器学习方法。当追求基于数据的方法,我们利用现有的直接数值模拟数据作为我们的训练数据。我们强调LES墙造型,其中一个写入所有流动量在坐标由壁法方向和近壁流动方向定义的,和雷诺平均的Navier-Stokes模型,其中一个写在张的形式流入量之间的差值。追求一个基于物理学的方法,我们在墙上模型重整涡黏性占系统旋转。采用重新涡粘度,壁模型能够正确地预测平均流量。追求基于数据的方法,我们培养了完全连接前馈神经网络(FNN)。模糊神经网络是了解我们的平均流量知识(尽管有限)。然后,我们使用的培训FNNS在墙墙体模型模拟LES(WMLES),并显示它正确地预测平均流。虽然它不是这个研究的重点,特别关注到数层不匹配,这是WMLES常见的问题。我们的研究表明,对数层不匹配,或者更确切地说,在翼展方向旋转通道WMLES线性层不匹配,不存在在高转数,即使在壁的模型/ LES匹配位置是在所述第一网格点。

著录项

  • 来源
    《Physics of fluids》 |2019年第12期|共17页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 流体力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号