...
首页> 外文期刊>Physics of fluids >Diffuse interface immersed boundary method for low Mach number flows with heat transfer in enclosures
【24h】

Diffuse interface immersed boundary method for low Mach number flows with heat transfer in enclosures

机译:漫反射界面浸没边界法与外壳中热传递的低马赫数流动

获取原文
获取原文并翻译 | 示例
           

摘要

A novel diffuse interface immersed boundary (IB) approach in the finite volume framework is developed for non-Boussinesq flows with heat transfer. These flows are characterized by variable density, large temperature differences, nonzero velocity divergence, and low Mach numbers. The present IB methodology assumes that the solid body immersed in the domain is filled with a "virtual" fluid and constructs a unified momentum equation that is solved everywhere in the domain. The unified momentum equation is obtained as a convex combination of the Navier-Stokes equation and the no-slip boundary condition employing the solid volume fraction. The hydrodynamic pressure (p) that drives the flow is obtained by the solution of a variable density Poisson equation that is constructed by assuming that the velocity field inside the solid always remains solenoidal although the velocity divergence is nonzero in the fluid domain. The unified Poisson equation is also solved everywhere in the domain and has source terms that depend on the solid volume fraction, temperature gradients, and the spatially invariant thermodynamic pressure (P) that vanish in the Boussinesq limit. The thermodynamic pressure in closed domains follows from the principle of global mass conservation and is used to determine the density field everywhere in the domain except inside the solid where the density remains constant. Numerical simulations are carried out for natural and mixed convective flows in enclosures with stationary and moving heated bodies encompassing both Boussinesq and strongly non-Boussinesq flow regimes. The results of these investigations show that the local Nusselt number distribution over the body surface is oscillatory particularly when grid lines are not aligned with the surface of the body. However, the proposed approach can reasonably accurately compute the average heat transfer in both Boussinesq and non-Boussinesq flows. Investigations show that the heat transfer is significantly enhan
机译:沉浸在有限体积框架边界(IB)的方法的新型扩散界面开发用于非的Boussinesq传热流动。这些流由可变密度,大的温度差异,非零速度散度,和低马赫数表征。本IB方法假设沉浸在域固体本体充满了“虚拟”流体和构造一个域中处处解决一个统一的动量方程。统一动量方程作为Navier-Stokes方程和的凸组合获得的无滑移采用固相体积分数边界条件。动水压力(P),该驱动器的流动是由通过假设构成的可变密度泊松方程的解获得的固体内的速度场总是保持螺线管虽然速度散度是非零在流体域。统一泊松方程也解决无处不在的域,并且具有依赖于固相体积分数,温度梯度,并且在限制的Boussinesq消失的空间不变的热力学压力(P)源项。在封闭结构域的热力学压力从全球质量守恒原理如下,并用于确定到处密度场域中除固体内部其中密度保持恒定。数值模拟与静止和移动加热体既包括的Boussinesq和强非的Boussinesq流态下进行自然和混合对流在机箱。这些调查的结果显示,在体表局部Nu数分布振荡特别是当网格线并不与身体的表面排列。然而,所提出的方法可以相当准确地计算在两个的Boussinesq和非的Boussinesq流动的平均热传递。调查表明,传热显著enhan

著录项

  • 来源
    《Physics of fluids》 |2019年第8期|共21页
  • 作者

    Kumar Mukesh; Natarajan Ganesh;

  • 作者单位

    Indian Inst Technol Guwahati Dept Mech Engn Gauhati 781039 Assam India;

    Indian Inst Technol Guwahati Dept Mech Engn Gauhati 781039 Assam India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 流体力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号