...
首页> 外文期刊>Physical review, B >Method to quantify the delocalization of electronic states in amorphous semiconductors and its application to assessing charge carrier mobility of p-type amorphous oxide semiconductors
【24h】

Method to quantify the delocalization of electronic states in amorphous semiconductors and its application to assessing charge carrier mobility of p-type amorphous oxide semiconductors

机译:用于量化非晶半导体中电子态的分层化的方法及其应用于评估p型非晶氧化物半导体的电荷载流子迁移率

获取原文
获取原文并翻译 | 示例
           

摘要

Amorphous semiconductors are usually characterized by a low charge carrier mobility, essentially related to their lack of long-range order. The development of such material with higher charge carrier mobility is hence challenging. Part of the issue comes from the difficulty encountered by first-principles simulations to evaluate concepts such as the electron effective mass for disordered systems since the absence of periodicity induced by the disorder precludes the use of common concepts derived from condensed matter physics. In this paper, we propose a methodology based on first-principles simulations that partially solves this problem, by quantifying the degree of delocalization of a wave function and of the connectivity between the atomic sites within this electronic state. We validate the robustness of the proposed formalism on crystalline and molecular systems and extend the insights gained to disordered/amorphous InGaZnO4 and Si. We also explore the properties of p-type oxide semiconductor candidates recently reported to have a low effective mass in their crystalline phases [G. Hautier et al., Nat. Commun. 4, 2292 (2013)]. Although in their amorphous phase none of the candidates present a valence band with delocalization properties matching those found in the conduction band of amorphous InGaZnO4, three of the seven analyzed materials show some potential. The most promising candidate, K2Sn2O3, is expected to possess in its amorphous phase a slightly higher hole mobility than the electron mobility in amorphous silicon.
机译:非晶半导体的特征在于低电荷载流动性,基本上与其缺乏远程顺序有关。因此,具有较高电荷载流子迁移率的这种材料的发展是具有挑战性的。部分问题来自第一原理模拟遇到的困难,以评估诸如无序系统的电子有效质量的概念,因为由于该病症引起的周期性阻止了使用来自凝聚物物理学的常见概念的使用。在本文中,我们通过量化波浪函数的删除程度和该电子状态内的原子位点之间的连接性来提出部分解决该问题的第一原理模拟的方法。我们验证了拟议的形式主义对结晶和分子系统的鲁棒性,并延长了对紊乱/无定形的ImaznO4和Si获得的见解。我们还探讨了最近据报道的p型氧化物半导体候选的性质在其结晶相中具有低有效质量[G. Hautier等人。,NAT。安排。 4,2292(2013)]。虽然在他们的无定形阶段没有候选者呈现与迄今为止在无定形Ingazno4的导电带中发现的替代性能的价带,但是七种分析的三种分析的材料中的三种潜在的潜力。最有希望的候选者K2SN2O3预计将在其非晶相中具有比无定形硅中的电子迁移率略高的孔迁移率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号