...
【24h】

NMR - Bigger, stronger, faster ...

机译:NMR-更大,更强,更快...

获取原文
获取原文并翻译 | 示例
           

摘要

Since the first demonstration of nuclear induction in bulk matter in 1946, by Purcell and Bloch at Harvard and Stanford respectively, nuclear magnetic resonance (NMR) has become unarguably the most important and widely used physical tool for investigating matter. Its range is astonishing, encompassing such diverse areas as imaging of tissues in living animals, organic and inorganic materials in the liquid, liquid crystal or solid phase to quantum computing. The growth of NMR into this pre-eminent state has been a long and arduous journey, punctuated with the award of the Nobel Prize to four scientists for their contributions to NMR. Purcell and Bloch shared the 1952 Nobel Prize in physics and Richard Ernst was awarded the 1991 Nobel Prize in Chemistry for his contributions to the development of the methodology of high resolution NMR spectroscopy. Only a few weeks ago the Nobel prize for 2002 in Chemistry was awarded to three scientists, one of whom is Kurt Wtithrich for his development of NMR spectroscopy for determining the three-dimensional structure of biological macromolecules in solution, and the other two being John Fenn and Koichi Tanaka for their development of soft desorption ionization methods for mass spectrometric analyses of biological macromolecules. The growth of NMR as a bioanalytical tool has been aided by developments in other seemingly unrelated areas of science such as solid state physics and material science for the design and construction of exquisitely sensitive electronic components for the detection of very weak radio frequency signals and concurrently development of high field superconducting magnets that today range in field, strength from 7.05 to 21.14 T (10,000 Gauss=1 T, for comparison the earth's magnetic field is 0.5 Gauss) that increase the sensitivity of detection and resolution. Today NMR signals can be recorded on samples ranging in quantity from a few tenths of a milligram to a milligram (Purcell recorded his first NMR signal using a 1 kg block of paraffin wax as a sample). Last but not the least, bioanalytical NMR has benefited enormously from methodological improvements in genetic engineering and molecular biology for production of native proteins in quantities, usually milligrams, necessary for structural studies.
机译:自1946年Purcell和Bloch分别在哈佛大学和斯坦福大学首次展示了大体积物质中的核感应以来,毫无疑问,核磁共振(NMR)已成为研究物质最重要和广泛使用的物理工具。它的范围令人惊讶,涵盖了诸如活体动物组织成像,液相,液晶或固相中的有机和无机材料到量子计算等各种领域。 NMR增长到这一杰出状态是一段漫长而艰辛的旅程,并因其对NMR的贡献而被授予四位科学家诺贝尔奖。赛尔(Purcell)和布洛赫(Bloch)共同获得1952年诺贝尔物理学奖,理查德·恩斯特(Richard Ernst)因其对高分辨率NMR光谱学方法的发展做出的贡献而荣获1991年诺贝尔化学奖。就在几周前,三位科学家获得了2002年诺贝尔化学奖,其中一位是因研发了NMR光谱学(用于确定溶液中生物大分子的三维结构)的Kurt Wtithrich,另外两位是John Fenn和田中耕一(Koichi Tanaka)一起开发了软解吸电离方法,用于质谱分析生物大分子。核磁共振作为一种生物分析工具的发展已经得到了其他看似无关的科学领域的发展的帮助,例如固态物理学和材料科学领域的研究,这些领域的设计和构造是用于检测非常弱的射频信号并同时开发的非常敏感的电子组件。目前使用的高磁场超导磁体的磁场强度从7.05到21.14 T(10,000 Gauss = 1 T,相比之下,地球磁场为0.5 Gauss),提高了检测和分辨率的灵敏度。如今,NMR信号可以记录在数量范围从十分之几毫克到几毫克的样品上(Purcell使用1 kg的石蜡块作为样品记录了他的第一个NMR信号)。最后但并非最不重要的一点是,生物分析NMR极大地受益于基因工程和分子生物学方法学的改进,以生产结构研究所需的数量通常为毫克的天然蛋白质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号