...
首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Exploring Through-Space Spin-Spin Couplings for Quantum Information Processing: Facing the Challenge of Coherence Time and Control Quantum States
【24h】

Exploring Through-Space Spin-Spin Couplings for Quantum Information Processing: Facing the Challenge of Coherence Time and Control Quantum States

机译:用于量子信息处理的空间自旋旋转联轴器:面对相干时间和控制量子状态的挑战

获取原文
获取原文并翻译 | 示例
           

摘要

Nuclear magnetic resonance (NMR) is a powerful tool for studying quantum information processing (QJP). Recently quantum technologies have been proposed to overcome the challenges in large-scale NMR QIP. Furthermore, computational chemistry can promote its improvement. Nuclear spins-1/2 are natural qubits and have been used in most NMR quantum computation experiments. However, molecules that enable many qubits NMR QIP implementations should meet some requirements regarding their spectroscopic properties. Exceptionally large through-space (TS) P-P spin-spin coupling constants (SSCC or J) observed in 1,8-diphosphanaphthalenes (PPN) and in naphtho[1,8-cd]-1,2-dithiole phenylphosphines (NTP) were proposed and investigated to provide more accurate control within large-scale NMR QIP. Spectroscopic properties of PPN and NTP derivatives were explored by theoretical strategies using locally dense basis sets (LDBS). P-31 chemical shifts (delta) calculated at the B3LYP/aug-cc-pVTZ-J level and TS P-P SSCCs at the PBE1PBE/pcJ-2 (LDBS-1) level are very close to the experimental data for the PPN molecule. Differently, for the NTP dimer, PBE1PBE/pcJ-2 (LDBS-2) predicts more accurate P-31 (5, whereas PBE1PBE/Def2-TZVP (LDBS-1) forecasts more accurate TS P-P SSCCs. From our results, PPNo-F, PPNo-ethyl, and PPNo-NH2 were the best candidates for NMR QIP, in which the large TS SSCCS could face the need of long-time quantum gates implementations. Therefore, it could overcome natural limitations concerning the development of large-scale NMR.
机译:核磁共振(NMR)是用于研究量子信息处理(QJP)的强大工具。最近已经提出了克服大规模核苷酸QIP的挑战。此外,计算化学可以促进其改进。核Spins-1/2是天然QUBITS,并且已在大多数NMR量子计算实验中使用。然而,使许多Qubits NMR QIP实现的分子应符合其对光谱性质的一些要求。在1,8-二磷差基(PPN)和萘[1,8-CD] -1,2-二硫代苯基膦(NTP)中观察到的异常大的贯通空间(TS)PP旋转偶联常数(SSCC或J)提出并调查,为大规模NMR QIP提供更准确的控制。通过使用局部密集的基集(LDB)的理论策略探讨了PPN和NTP衍生物的光谱性质。在B3LYP / AUG-CC-PVTZ-J水平和PBE1PBE / PCJ-2(LDBS-1)水平下计算的P-31化学位移(DELTA)和TS P-P SSCCS的水平非常接近PPN分子的实验数据。不同地,对于NTP二聚体,PBE1PBE / PCJ-2(LDBS-2)预测更准确的P-31(5,而PBE1PBE / DEF2-TZVP(LDBS-1)预测更准确的TS PP SSCC。来自我们的结果,PPNO- F,PPNO-乙基和PPNO-NH2是NMR QIP的最佳候选者,其中大的TS SSCC可能面临长时间量子栅极实施的需要。因此,它可以克服关于大规模发展的自然局限性NMR。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号