【24h】

Cyclic Ketones as Future Fuels: Reactivity with OH Radicals

机译:循环酮作为未来的燃料:与oh激进的反应性

获取原文
获取原文并翻译 | 示例
           

摘要

For a sustainable energy future, research directions should orient toward exploring new fuels suitable for future advanced combustion engines to achieve better engine efficiency and significantly less harmful emissions. Cyclic ketones, among bio-derived fuels, are of significant interest to the combustion community for several reasons. As they possess high resistance to autoignition characteristics, they can potentially be attractive for fuel blending applications to increase engine efficiency and also to mitigate harmful emissions. Despite their importance, very few studies are rendered in understanding of the chemical kinetic behavior of cyclic ketones under engine-relevant conditions. In this work, we have conducted an experimental investigation for the reaction kinetics of OH radicals with cyclopentanone and cyclohexanone for the first time over a wide range of experimental conditions (T = 900-1330 K and p approximate to 1.2 bar) in a shock tube. Reaction kinetics was followed by monitoring UV laser absorption of OH radicals near 306.7 nm. Our measured rate coefficients, with an overall uncertainty (2 sigma) of +/-20%, can be expressed in Arrhenius form as (in units of cm(3) molecule(-1) s(-1)): k(1)(CPO + OH) = 1.20 X 10(10) exp(-2115K/T) (902-1297 K); k(2)(CHO + OH) = 2.11 x 10(-10) exp(-2268K/T) (935-1331K). Combining our measured data with the single low-temperature literature data, the following three-parameter Arrhenius expressions (in units of cm(3) molecule(-1) s(-4)) are obtained over a wider temperature range: k(1)(CPO + OH) = 1.07 X 10(-13)(T/300 K)(3.20) T exp(1005.7K/T) (298-1297 K); k(2)(CHO + OH) = 3.12 x 10(-13)(T/300 K)(2.78) exp(897.5T/K) (298-1331 K). Discrepancies between the theoretical and current experimental results are observed. Earlier theoretical works are found to overpredict our measured rate coefficients. Interestingly, these cyclic ketones exhibit similar reactivity behavior to that of their linear ketone counterparts over the expe
机译:对于可持续的能源未来,研究方向应定向探索适合未来先进燃烧发动机的新燃料,以实现更好的发动机效率和显着的有害排放。在生物衍生的燃料中,循环酮在燃烧界中对燃烧界非常感兴趣。由于它们具有高抵抗自动性特性,因此它们可能对燃料混合应用可能具有吸引力,以提高发动机效率,并减轻有害排放。尽管重要的是,在发动机相关条件下了解循环酮的化学动力学行为来说,很少有研究。在这项工作中,我们对ob oppentanone和环己酮的反应动力学进行了实验研究,这是在冲击管中的宽范围的实验条件(T = 900-1330 k和P近似为1.2 bar)的范围内第一次。随后通过306.7nm接近oh基团监测uV激光吸收的反应动力学。我们的测量速率系数,具有+/- 20%的总不确定性(2 sigma),可以以Arrhenius形式表达为(以cm(3)分子(-1)(-1)):k(1 )(CPO + OH)= 1.20 x 10(10)exp(-2115k / t)(902-1297 k); K(2)(CHO + OH)= 2.11 x 10(-10)exp(-2268k / t)(935-1331k)。将测量数据与单个低温文献数据相结合,在更宽的温度范围内获得以下三参数Arhenius表达(以cm(3)分子(-1)分子(-4)):K(1 )(CPO + OH)= 1.07×10(-13)(T / 300 k)(3.20)T EXP(1005.7K / T)(298-1297 K); K(2)(CHO + OH)= 3.12×10(-13)(T / 300 k)(2.78)exp(897.5t / k)(298-1331 k)。观察到理论和当前实验结果之间的差异。早期的理论作品被发现估计我们测量的速率系数。有趣的是,这些环酮表现出类似的反应性行为,以在其线性酮对应物上表现出类似的反应性行为

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号