首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Hydrogen Bonding of Ammonia with (H,OH)-Si(001) Revealed by Experimental and Ab Initio Photoelectron Spectroscopy
【24h】

Hydrogen Bonding of Ammonia with (H,OH)-Si(001) Revealed by Experimental and Ab Initio Photoelectron Spectroscopy

机译:通过实验和AB Initio光电子能谱揭示氨与(H,OH)-SI(001)的氢键

获取原文
获取原文并翻译 | 示例
           

摘要

Combining experimental and ab initio core-level photoelectron spectroscopy (periodic DFT and quantum chemistry calculations), we elucidated how ammonia molecules bond to the hydroxyls of the (H,OH)-Si(001) model surface at a temperature of 130 K. Indeed, theory evaluated the magnitude and direction of the N 1s (and O 1s) chemical shifts according to the nature (acceptor or donor) of the hydrogen bond and, when confronted to experiment, showed unambiguously that the probe molecule makes one acceptor and one donor bond with a pair of hydroxyls. The consistency of our approach was proved by the fact that the identified adsorption geometries are precisely those that have the largest binding strength to the surface, as calculated by periodic DFT. Real-time core-level photoemission enabled measurement of the adsorption kinetics of H-bonded ammonia and its maximum coverage (0.37 ML) under 1.5 x 10(-9) mbar. Experimental desorption free energies were compared to the magnitude of the adsorption energies provided by periodic DFT calculations. Minority species were also detected on the surface. As in the case of H-bonded ammonia, DFT core-level calculations were instrumental to attribute these minority species to datively bonded ammonia molecules, associated with isolated dangling bonds remaining on the surface, and to dissociated ammonia molecules, resulting largely from beam damage.
机译:结合实验性和AB初始核心级光电子谱(周期性DFT和量子化学计算),我们阐明了氨分子在130k的温度下键入(H,OH)-SI(001)模型表面的羟基α的羟基。 ,理论评价根据氢键的性质(受体或供体)的N 1S(和O 1S)化学换档的幅度和方向,并且当面对实验时,探测分子使探针分子成为一个受体和一种供体用一对羟基键合。通过通过周期性DFT计算的所识别的吸附几何形状,所识别的吸附几何形状是鉴定的吸附几何形状,所以通过周期性DFT计算的鉴定的吸附几何形状。实时核心级光曝光使H键合氨的吸附动力学和其最大覆盖率(0.37mL)下方的1.5×10(-9)毫巴。将实验解吸能量与周期DFT计算提供的吸附能量的大小进行比较。在表面上也检测到少数群体。与H键合氨的情况一样,DFT核心水平计算是有助于将这些少数物种归因于可靠性粘合的氨分子,与残留在表面上的分离的悬空键相关,并使氨分子分离,这主要来自光束损伤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号