...
首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Dynamics of the C(3P) + Ethylene Reaction: A Trajectory Surface Hopping Study
【24h】

Dynamics of the C(3P) + Ethylene Reaction: A Trajectory Surface Hopping Study

机译:C( 3 p)+乙烯反应的动力学:轨迹表面跳跃研究

获取原文
获取原文并翻译 | 示例
           

摘要

The direct dynamics trajectory surface hopping (DDTSH) method has been employed to study the reaction of C(~(3)P) with ethylene (C_(2)H_(4)). Our trajectory simulations show that at a reagent collision energy of 7.36 kcal/mol, there are two possible product channels: propargyl (H_(2)CCCH) + H and carbene (CH_(2)) + acetylene (HCCH). Estimated branching ratios based on trajectory propagations indicate that propargyl radical formation is the dominant channel contributing (94.1 ± 5.2) % of the overall products formation with (5.9 ± 1.7)% contribution from the minor CH_(2) + HCCH channel. These findings are consistent with earlier experimental observations and theoretical predictions that propargyl (H_(2)CCCH) formation is the dominant channel for the C(~(3)P) + C_(2)H_(4) collision reaction. Our trajectory simulations, however, unravel five distinctly different dynamical pathways, unlike earlier experimental and theoretical predictions of only two pathways proposed for the formation of propargyl radical, and three different dynamics are followed for the CH_(2) + HCCH channel (this channel was not detected experimentally). The computed translational energy distribution for the propargyl + H channel is narrower and showed peak maximum at a lower energy compared to the experimental one. While the center of mass product angular distribution based on our trajectory propagation is nearly isotropic in nature indicating formation of long-lived intermediate complexes, the experimental one was reported to be backward–forward distributed with more intensity in the forward direction indicating the formation of an osculating complex. Our trajectory surface hopping calculations confirm that the effect of intersystem crossing (ISC) is not important for the title reaction presumably because of weak spin–orbit coupling values (<10 cm~(–1)) for the (C + C_(2)H_(4)) system. No trace of cyclic products formation was obtained from our trajectory simulations, which however was predicte
机译:已经采用直接动力学轨迹表面跳跃(DDTSH)方法研究C(3)p)与乙烯(C_(2)H_(4))的反应。我们的轨迹模拟表明,在7.36kcal / mol的试剂碰撞能量下,有两种可能的产品通道:丙基(H_(2)CCCH)+ H和卡宾(CH_(2))+乙炔(HCCH)。基于轨迹繁殖的估计分支比表明,丙基自由基形成是从次要CH_(2)+ HCCH通道的贡献(5.9±1.7)贡献的总体产品的主要通道(94.1±5.2)%。这些发现与早期的实验观察结果和理论预测一致,即丙基(H_(2)CCCH)形成是C(3)p)+ C_(2)H_(4)碰撞反应的主要通道。然而,我们的轨迹仿真解开了五个明显不同的动态途径,与早期的实验和理论预测不同,所提出的两个途径,提出了用于形成丙基基质的三种途径,以及CH_(2)+ HCCH通道的三种不同的动态(这个频道是未经实验检测到)。与实验1相比,丙基+ H通道的计算平移能量分布较窄,并且在较低的能量下显示峰值最大值。虽然基于我们的轨迹繁殖的大规模产品角度分布的中心是几乎各向同性的,但表明长寿命中间复合物的形成,据报道,实验一体向前分布,前向前分布在前向方向上的强度,指示形成的形成承诺复杂。我们的轨迹表面跳跃计算证实,Intersystem交叉(ISC)的效果对于标题反应可能是由于(C + C_(2)的弱旋转轨道耦合值(<10cm〜(-1)) H_(4))系统。从我们的轨迹模拟中没有形成循环产品的痕迹,然而已经预测

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号