首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Doping of Green Fluorescent Protein into Superfluid Helium Droplets: Size and Velocity of Doped Droplets
【24h】

Doping of Green Fluorescent Protein into Superfluid Helium Droplets: Size and Velocity of Doped Droplets

机译:将绿色荧光蛋白掺杂到超氟氦液滴:掺杂液滴的尺寸和速度

获取原文
获取原文并翻译 | 示例
           

摘要

We report doping of green fluorescent protein from an electrospray ionization (ESI) source into superfluid helium droplets. From analyses of the time profiles of the doped droplets, we identify two distinct groups of droplets. The faster group has a smaller average size, on the order of 10(6) helium atoms/droplet, and the slower group is much larger, by at least an order of magnitude. The relative populations of these two groups depend on the temperature of the droplet source: from 11 to 5 K, the signal intensity of the slower droplet group gradually increases, from near the detection limit to comparable to that of the faster group. We postulate that the smaller droplets are formed via condensation of gaseous helium upon expansion from the pulsed valve, while the larger droplets develop from fragmentation of ejected liquid helium. Our results on the size and velocity of the condensation peak at higher source temperatures (>7 K) agree with previous reports, but those at lower temperatures (<7 K) seem to be off. We attribute this discrepancy to the masking effect of the exceedingly large droplets from the fragmentation peak in previous measurements of droplet sizes. Within the temperature range of our investigation, although the expansion condition changes from subcritical to supercritical, there is no abrupt change in either the velocity distribution or the size distribution of the condensation peak, and the most salient effect is in the increasing intensity of the fragmentation peak. The absolute doping efficiency, as expressed by the ratio of ion-doped droplets over the total number of ions from the ESI source, is on the order of 10(-4), while only hundreds of doped ions have been detected. Further improvements in the ESI source are key to extending the technology for future experiments. On the other hand, the separation of the two groups of droplets in velocity is beneficial for size selection of only the smaller droplets for future experiments of electron diffraction.
机译:我们将来自电喷雾电离(ESI)源的绿色荧光蛋白掺杂到超流氦液滴中。根据掺杂液滴的时间概况的分析,我们鉴定了两个不同的液滴组。较快的组具有较小的平均尺寸,大约10(6)氦原子/液滴,并且较慢的组比例更大,至少是一个数量级。这两组的相对群体取决于液滴源的温度:从11至5 k,较慢的液滴组的信号强度从近的检测限逐渐增加,与更快的组的较快组。我们假设通过气态氦在从脉冲阀的膨胀时通过气态氦的冷凝形成较小的液滴,而较大的液滴从喷射液氦的碎片产生。我们对较高源温度(> 7 k)的凝结峰的尺寸和速度的结果与之前的报告同意,但在较低温度(<7 k)下的那些似乎是关闭的。我们将这种差异归因于在先前测量液滴尺寸的碎片峰值中从碎片峰值的极大液滴的掩蔽效果。在我们调查的温度范围内,尽管膨胀条件从亚临界到超临界变化,但速度分布或缩合峰的尺寸分布没有突然变化,并且最突出的效果是碎片强度的增加顶峰。由离子掺杂液滴与来自ESI源极数的离子掺杂液滴的比率表示的绝对掺杂效率约为10(-4),而已经检测到数百个掺杂离子。 ESI源的进一步改进是扩展技术以延长未来实验的关键。另一方面,两组液滴中的分离在速度下是有益的,对于尺寸选择,仅选择用于未来电子衍射的实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号