...
【24h】

Kinetic Modeling of the Thermal Destruction of Nitrogen Mustard Gas

机译:氮芥子气体热破坏的动力学建模

获取原文
获取原文并翻译 | 示例
           

摘要

src="http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jpcafh/2017/jpcafh.2017.121.issue-17/acs.jpca.7b01238/20170428/images/medium/jp-2017-01238h_0015.gif">The destruction of stockpiles or unexploded ammunitions of nitrogen mustard (tris(2-chloroethyl)amine, HN-3) requires the development of safe processes. The thermal destruction of this kind of compound is one of the most efficient method of destruction. Because of the high-level of toxicity of this chemical, there is a considerable lack of knowledge on the chemical kinetics at high temperatures. In this study, a detailed chemical kinetic model for the pyrolysis of nitrogen mustard gas is developed based on a large number of thermokinetic parameters calculated with theoretical chemistry. The thermal decomposition of HN-3 is shown to mainly proceed through stepwise dechlorination with Cl-atom being the principal chain carrier. The successive losses of chlorine atom mainly lead to unsaturated amines without chlorine groups. Theoretical calculations demonstrated that the thermal decomposition of these compounds ultimately lead to the formation of pyrrole, which can accumulate at low temperature. At higher temperatures, pyrrole yields HCN and acetylene. Simulations also predict that about 52% of the total flux of decomposition of HN-3 leads to the formation of N,N-diethenyl-2-chloroethylamine (P29), which acts as a chain branching agent because its unimolecular decomposition is preponderant and produces one chlorine and one hydrogen atoms. Comparisons with the simulated reactivity of sulfur mustard gas are also performed and show that HN-3 is more reactive that the former toxic. The higher number of chlorine atoms in HN-3 compared to sulfur mustard (3 vs 2) and the formation of the chain branching intermediate P29 during its decomposition explain this behavior.
机译:src =“http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jpcafh/2017/jpcafh.2017/jpcafh.2017.121.issue-17/acs.jpca.7b01238/20170428/images/medium / jp-2017-01238h_0015.gif">破坏库存或未爆炸的氮芥末(Tris(2-氯乙基)胺,HN-3)需要开发安全过程。这种化合物的热破坏是最有效的破坏方法之一。由于这种化学品的高含量毒性,在高温下对化学动力学具有相当大的知识。在该研究中,基于用理论化学计算的大量热动力学参数,开发了一种用于氮芥子气体热解的详细化学动力学模型。 HN-3的热分解显示主要通过逐步脱氯,用CL-原子是主要链载体。氯原子的连续损失主要导致不含氯基团的不饱和胺。理论计算表明,这些化合物的热分解最终导致吡咯的形成,其可以在低温下积聚。在较高的温度下,吡咯产生HCN和乙炔。仿真还预测HN-3分解的总通量的约52%导致形成 N - 2-氯乙胺(P29)的形成,其形成为 N-I> - 二乙基-2-氯乙胺(P29)作为链分枝代理,因为其单分子分解是优势,并产生一种氯和一个氢原子。还进行了对硫芥末气体的模拟反应性的比较,并表明HN-3更具反应性,以至于前者有毒。与硫芥末(3Vs 2)相比,HN-3中氯原子数量越多,并且在其分解过程中形成链分支中间体P29解释了这种行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号