...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Photocatalytic Facet Selectivity in BiVO4 Nanoparticles: Polaron Electronic Structure and Thermodynamic Stability Considerations for Photocatalysis
【24h】

Photocatalytic Facet Selectivity in BiVO4 Nanoparticles: Polaron Electronic Structure and Thermodynamic Stability Considerations for Photocatalysis

机译:Bivo4纳米粒子的光催化方面选择性:Polaron电子结构和光催化的热力学稳定性考虑

获取原文
获取原文并翻译 | 示例
           

摘要

Selective charge separation among different crystal facets of a semiconductor is an intriguing phenomenon for which there is no firm and full theoretical foundation currently. In this work, we report on a density functional theory + U characterization of band alignment and electron and hole polaron stabilities among the (010), (110), and (011) facets of bismuth vanadate BiVO4 (BVO). Computation-derived band alignment indicates that the conduction band minima are at nearly the same level among the three facets but that the valence band maxima exhibit a shift. We also modeled electron and hole polarons as localized electrons and holes on vanadium and oxygen, respectively, and determined their relative stabilities from a "bulk" region to a surface region. Calculated stabilities reveal similar stability profiles across the various facets, with electron polarons most stable when localized on subsurface V atoms and hole polarons most stable on surface 0 atoms. Calculations indicate a small stability preference for electron polarons toward the (011) facet and for hole polarons toward the (110) facet, whereas, experimentally, interfacial reduction is observed to take place selectively on the (010) facet and oxidation on the (110) and (011) facets. Facet selectivity could be occurring on the basis of thermodynamics (electron or holes showing a stronger affinity for some facets over others) or kinetics (electron or hole transport and/or redox processes being more efficient toward/on some facets over others) or a combination of both. This work establishes that thermodynamic stability alone is not responsible for the observed facet selectivity in BVO. Therefore, we surmise that polaron transport kinetics and interfacial redox kinetics are likely to have a role in facet selectivity in BVO. These issues will be the subject of future publications.
机译:半导体的不同晶体面之间的选择性电荷分离是目前没有公司和理论基础的有趣现象。在这项工作中,我们报告了铋钒酸盐BiVo4(BVO)的(010),(110)和(011)刻面之间的带对准和电子和孔极化率的频带对准和电子和孔极化稳定性的函数。计算导出的频带对准表明,传导频带最小值在三个小平面之间处于几乎相同的水平,但是价频带最大值表现出偏移。我们还在钒和氧气上为局部电子和孔进行建模,并确定它们与“散装”区域到表面区域的相对稳定性。计算的稳定性揭示了各个方面的相似稳定性曲线,电子极化子在地下V原子和孔极性上局部稳定时最稳定的表面0原子。计算表示对(011)刻面的电子极化和朝向(110)刻面的孔极化的小稳定性偏好,而实验地,观察到在(010)刻面和氧化方面选择性地进行界面减少(110 )和(011)方面。可以在热力学(电子或孔对其他方面具有更强的亲和力)或动力学(电子或空穴传输和/或氧化还原过程的基础上,以朝向/在其他方面更有效)或组合两者。这项工作确定了单独的热力学稳定性对BVO中观察到的小型选择性不负责。因此,我们推测,Polaron传输动力学和界面氧化还原动力学可能在BVO中的各自选择性中具有作用。这些问题将是未来出版物的主题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号