...
首页> 外文期刊>Dalton transactions: An international journal of inorganic chemistry >One-pot synthesis of tin chalcogenide-reduced graphene oxide-carbon nanotube nanocomposite as anode material for lithium-ion batteries
【24h】

One-pot synthesis of tin chalcogenide-reduced graphene oxide-carbon nanotube nanocomposite as anode material for lithium-ion batteries

机译:锂离子电池阳极材料的锡硫族化物 - 氧化物降氧化物 - 碳纳米纳米复合材料的单壶合成

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, a ternary tin chalcogenide (TC)-reduced graphene oxide (RGO) carbon nanotube (CNT) nanocomposite was synthesized as a lithium-ion battery (LIB) anode by a simple one-step protocol. The nanocomposite was prepared through a hydrothermal method using tin chloride as the tin precursor, thiourea as the sulfur source and reducing agent, and GO-CNT hybrid as the carbonaceous nanostructure. The structure, morphology, and phase analysis of the synthesized nanocomposite powder were investigated using Raman spectroscopy, field-emission scanning electron microscopy (FESEM), and X-ray diffraction (XRD). The results show that GO is reduced while SnS and SnS2 nanosheets along with SnO2 nanoparticles are simultaneously formed within the RGO-CNT hybrid framework throughout the hydrothermal process. During the first lithiation-delithiation process, the discharge capacity and the columbic efficiency for the ternary TC-RGO-CNT nanocomposite electrode at a current density of 50 mA g(-1) are 1401 mA h g(-1). and 50%, respectively. The TC-RGO-CNT electrode gives an improved capacity of 197 mA h g(-1) at 500 mA g(-1) while the corresponding value for the bare TC, and binary TC-CNT and TC-RGO nanocomposite electrodes was only 5, 18, and 41 mA h g(-1), respectively. Meanwhile, the ternary nanocomposite anode indicates outstanding stability after 150 cycles with a reversible capacity of 100 mA h g(-1) at 500 mA g(-1). The excellent electrochemical performance of the ternary TC-RGO-CNT nanocomposite is ascribed to the synergistic effect of the high capacity of electrochemically-active TC nanostructures along with the large surface area, porous structure, and exceptional conductivity of the 3D RGO-CNT framework.
机译:在该研究中,通过简单的一步方案,通过简单的一步方案合成三烯锡硫属元素化物(Tc)碳氧化物(Rgo)碳纳米氧化物(Rgo)纳米氧化物(RGO)纳米核化合物作为锂离子电池(Lib)阳极。通过使用氯化锡作为锡前体,硫脲作为硫源和还原剂制备纳米复合材料,以及作为碳质纳米结构的Go-CNT杂交剂。使用拉曼光谱,现场排放扫描电子显微镜(FESEM)和X射线衍射(XRD)研究了合成纳米复合粉的结构,形态和相分析。结果表明,在整个水热过程的RGO-CNT杂交骨架内同时形成SNS和SNS2纳米液以及SNO2纳米颗粒的同时降低。在第一锂锂化工程期间,在50mA G(-1)的电流密度下的三元TC-RGO-CNT纳米复合电极的放电容量和牙牙效率为1401mA Hg(-1)。分别为50%。 TC-rgo-CNT电极在500mA G(-1)处提高了197 mA Hg(-1)的容量,而裸菌体Tc的相应值和二进制Tc-CNT和Tc-Rgo纳米复合电极仅为5 ,分别为18和41 mA hg(-1)。同时,三元纳米复合阳极表示在500mA g(-1)的可逆容量为100mA H(-1)的150次循环后的突出稳定性。三元TC-RGO-CNT纳米复合材料的优异电化学性能归因于电化学活性TC纳米结构的高容量以及3D RGO-CNT框架的大表面积,多孔结构和卓越导电性的协同效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号