...
首页> 外文期刊>Dalton transactions: An international journal of inorganic chemistry >Metal-organic framework assisted and in situ synthesis of hollow CdS nanostructures with highly efficient photocatalytic hydrogen evolution
【24h】

Metal-organic framework assisted and in situ synthesis of hollow CdS nanostructures with highly efficient photocatalytic hydrogen evolution

机译:具有高效光催化氢化的金属 - 有机框架和原位合成中空Cds纳米结构

获取原文
获取原文并翻译 | 示例
           

摘要

Here, hollow CdS nanoboxes (average size of 120 nm) with graded nanovoids (ranging from 2 nm to 13 nm) distributed in the walls (average thickness of 20 nm) are in situ synthesized through directly sulfurizing a Cd metal-organic framework (Cd-MOF-47) with thiourea. A specific surface area of 153 m(2) g(-1) is achieved. With as-prepared hollow CdS nanoboxes as photocatalysts for water splitting to H-2 (visible light irradiation), H-2 evolution rate is as high as 21654 mu mol g(-1) h(-1), which is nearly 79 times higher than that of bulk CdS. Such an excellent photocatalytic efficiency is ascribed to the large specific surface area for improving light absorbability and the porous nanostructure for efficiently utilizing excitation light due to the multiple scattering within the hollow framework. Moreover, a smaller band gap (2.30 eV) with a higher conduction band (-0.83 V) presents a strong reducibility, which is beneficial for reducing H2O to H-2. A combination of fluorescence spectroscopy (PL), PL lifetimes and the photoelectrochemical technique shows that hollow CdS nanoboxes exhibit lower fluorescence intensity, longer electron lifetime and stronger photocurrent intensity than bulk CdS, implying an improved separation and transfer of photoinduced charge carriers. This work presents a novel methodology to prepare hollow nanostructures, exhibiting potential applications in the field of energy conversion.
机译:这里,分布在壁中分布的渐变纳米膜(范围为220nm)的中空Cds纳米氧氧氧氧氧氧化物(平均尺寸为120nm)(平均厚度为20nm)原位通过直接硫化Cd金属 - 有机框架(CD -mof-47)与硫脲。实现了153m(2 )g(-1)的比表面积。用AS制备的中空CDS纳米氧氧氧氧氧氧氧可分配到H-2(可见光照射),H-2进化率高达21654μmmolg(-1)H(-1),这几乎是79倍高于批量CD。这种优异的光催化效率归因于大的比表面积,以改善由于中空框架内的多个散射而有效利用激发光的可吸光度和多孔纳米结构。此外,具有更高导电带(-0.83V)的较小带隙(2.30eV)呈现出强的还原性,这有利于将H 2 O还原到H-2。荧光光谱(PL),PL寿命和光电化学技术的组合表明,中空CDS纳米氧氧氧氧氧氧氧氧氧氧氧氧氧可呈低于散装Cd的荧光强度,更长的电子寿命和更强的光电流强度,这意味着光诱导电荷载体的分离和转移改进。这项工作提出了一种新的方法来制备中空纳米结构,在能量转换领域中表现出潜在的应用。

著录项

  • 来源
  • 作者单位

    Beijing Normal Univ Coll Chem Minist Educ Key Lab Theoret &

    Computat Photochem Beijing 100875 Peoples R China;

    Beijing Normal Univ Coll Chem Minist Educ Key Lab Theoret &

    Computat Photochem Beijing 100875 Peoples R China;

    Beijing Normal Univ Coll Chem Minist Educ Key Lab Theoret &

    Computat Photochem Beijing 100875 Peoples R China;

    Beijing Normal Univ Coll Chem Minist Educ Key Lab Theoret &

    Computat Photochem Beijing 100875 Peoples R China;

    Beijing Normal Univ Coll Chem Minist Educ Key Lab Theoret &

    Computat Photochem Beijing 100875 Peoples R China;

    Beijing Normal Univ Coll Chem Minist Educ Key Lab Theoret &

    Computat Photochem Beijing 100875 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;无机化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号