...
首页> 外文期刊>Dalton transactions: An international journal of inorganic chemistry >Using lead chalcogenide nanocrystals as spin mixers: a perspective on near-infrared-to-visible upconversion
【24h】

Using lead chalcogenide nanocrystals as spin mixers: a perspective on near-infrared-to-visible upconversion

机译:使用铅硫属化物纳米晶作为旋转混合器:近红外到可见的上变化的视角

获取原文
获取原文并翻译 | 示例
           

摘要

The process of upconversion leads to emission of photons higher in energy than the incident photons. Near-infrared-to-visible upconversion, in particular, shows promise in sub-bandgap sensitization of silicon and other optoelectronic materials, resulting in potential applications ranging from photovoltaics that exceed the Shockley-Queisser limit to infrared imaging. A feasible mechanism for near-infraredto- visible upconversion is triplet-triplet annihilation (TTA) sensitized by colloidal nanocrystals (NCs). Here, the long lifetime of spin-triplet excitons in the organic materials that undergo TTA makes upconversion possible under incoherent excitation at relatively low photon fluxes. Since this process relies on optically inactive triplet states, semiconductor NCs are utilized as efficient spin mixers, absorbing the incident light and sensitizing the triplet states of the TTA material. The state-of-the-art system uses rubrene with a triplet energy of 1.14 eV as the TTA medium, and thus allows upconversion of light with photon energies above similar to 1.1 eV. In this perspective, we review the field of lead sulfide (PbS) NC-sensitized near-infraredto- visible upconversion, discuss solution-based upconversion, and highlight progress made on solid-state upconversion devices.
机译:上变化的过程导致能量高于事件光子的光子。特别地,近红外到可见的上变化,特别是在硅和其他光电材料的子带隙敏化中示出了承诺,导致潜在的应用范围从超出震撼批次限制到红外成像的光伏。用于近红外可见的上转化的可行机制是由胶体纳米晶体(NCS)敏化的三重态 - 三态湮灭(TTA)。这里,在接受TTA的有机材料中的旋转三重态激子的长寿命使得在相对低的光子通量下的不相干激发下可以上升。由于该过程依赖于光学惰性三联状态,因此半导体NC被用作有效的旋转混合器,吸收入射光并敏感TTA材料的三重态状态。最先进的系统使用具有1.14eV作为TTA介质的三重态能量的杂丁,因此允许用上面类似的光子能量的光升高到1.1eV。在这种观点中,我们审查了硫化铅(PBS)NC致敏的近红外近似可见的上变化,讨论了基于解决方案的上变化,并突出了在固态上变化装置上进行的进展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号