首页> 外文期刊>Journal of Applied Polymer Science >Hydrolysis of poly(l-lactide)/ZnO nanocomposites with antimicrobial activity
【24h】

Hydrolysis of poly(l-lactide)/ZnO nanocomposites with antimicrobial activity

机译:具有抗微生物活性的聚(L-丙交酯)/ ZnO纳米复合材料的水解

获取原文
获取原文并翻译 | 示例
           

摘要

This work investigates the effect of the incorporation of zinc oxide (ZnO) nanoparticles within a poly(l-lactic acid) (PLLA) matrix as an approach to speed up the hydrolysis of PLLA film surfaces. Hydrolysis was done by immersing nanocomposite films having 1 wt % of ZnO in 0.25 M sodium hydroxide at 58 degrees C. This concentration has been selected as it provides the maximum changes of physicochemical properties of hosting PLLA matrix. The evolution of the thermal properties, ultraviolet-visible transparency, wettability, and morphology were monitored at different time points. The amount of carboxylic groups onto PLLA/ZnO surfaces was quantified according to Toludine Blue-O assay. Hydrolysis was mainly limited to film surfaces, which were grafted by carboxylic groups as a result of the random scission of PLLA ester linkages. The presence of such functional groups decreases the inherent surface hydrophobicity of PLLA at short hydrolysis times. On the contrary, long hydrolyses increase the hydrophobicity as a result of surface nanostructuring induced by the degradation of PLLA to water-soluble oligomers. Overall, ZnO nanoparticles enable shorter surface modification times and provide a quick approach for the modification on the polarity of polylactide surfaces. The potential of hydrolyzed films as antimicrobial materials was explored using Gram-negative Escherichia coli as a model. (c) 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47786.
机译:该工作研究了氧化锌(ZnO)纳米颗粒在聚(L-乳酸)(PLLA)基质中的掺入作为加速PLLA膜表面水解的方法的影响。通过将具有1wt%的ZnO的纳米复合膜在0.25M氢氧化钠中浸入58℃下浸入纳米复合膜来完成水解。本浓度已经选择,因为它提供了宿主PLLA基质的物理化学性质的最大变化。在不同的时间点监测热性质,紫外线可见透明度,润湿性和形态的演变。根据托含量的蓝o测定量定量羧基在PLLA / ZnO表面上的量。水解主要限于薄膜表面,其由于PLLA酯键的随机裂变而被羧基接枝。这种官能团的存在降低了在短水解时间下PLLA的固有表面疏水性。相反,由于PLLA降解到水溶性低聚物的表面纳米结构,长水解增加了疏水性。总体而言,ZnO纳米粒子使表面改性时间较短,并提供了一种快速的方法,用于改变聚物表面的极性。使用革兰阴性大肠杆菌作为模型,探索了作为抗微生物材料作为抗微生物材料的水解薄膜的潜力。 (c)2019 Wiley期刊,Inc.J.Phill。聚合物。 SCI。 2019,136,47786。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号