首页> 外文期刊>Journal of Applied Polymer Science >Bubble growth model and its influencing factors in a polymer melt under nonisothermal conditions
【24h】

Bubble growth model and its influencing factors in a polymer melt under nonisothermal conditions

机译:泡沫生长模型及其在非等温条件下聚合物熔体的影响因素

获取原文
获取原文并翻译 | 示例
           

摘要

Traditionally, in order to simplify the bubble growth process in a polymer melt, an isothermal model is typically used. In fact, the temperature of the polymer melt is changing during the foaming process. In order to accurately study the growth mechanism of bubbles in polymer melts, we build a physical and mathematical model of bubble growth in a polymer melt under nonisothermal conditions. The parameters of pressure, zero-shear viscosity, relaxation time, Henry's constant, diffusion coefficient, and surface tension were determined. The fourth-order Runge-Kutta method was used to solve the nonisothermal bubble model in the polymer melt. A computational program is developed to find the dimensional change during the bubble growth process, and the correctness of the model is verified. The nonisothermal growth mechanism of and factors influencing bubbles in the polymer melt are analyzed. Combined with the design of experiment (DOE) analysis method, the transfer function of the bubble radius and the maximum growth rate of bubbles with the process parameters were obtained, such as cooling rate, system pressure, and gas concentration. The results show that system pressure has the most significant effect on bubble growth. At the same time, a bubble growth prediction model is built, which can be used to predict the growth of bubbles. Through optimization analysis, it can be used to control the growth of bubbles. (c) 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47210.
机译:传统上,为了简化聚合物熔体中的气泡生长过程,通常使用等温模型。实际上,在发泡过程中,聚合物熔体的温度正在发生变化。为了准确研究聚合物熔体气泡的生长机制,我们在非等温条件下构建聚合物熔体中的泡沫生长的物理和数学模型。测定压力,零剪切粘度,弛豫时间,亨利恒定,扩散系数和表面张力的参数。第四阶跑为Kutta方法用于解决聚合物熔体中的非等热气泡模型。开发了计算程序以找到气泡生长过程中的尺寸变化,并且验证了模型的正确性。分析了影响聚合物熔体中泡沫的非吸管机制和因子。结合实验(DOE)分析方法的设计,获得了气泡半径的传递函数和具有工艺参数的气泡的最大生长速率,例如冷却速率,系统压力和气体浓度。结果表明,系统压力对泡沫增长具有最显着的影响。同时,建造了气泡生长预测模型,其可用于预测气泡的生长。通过优化分析,可用于控制气泡的生长。 (c)2018 Wiley期刊,Inc.J.Phill。聚合物。 SCI。 2019,136,47210。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号