首页> 外文期刊>Journal of Applied Polymer Science >Salt-leaching technique for the synthesis of porous poly(2,5-benzimidazole) (ABPBI) membranes for fuel cell application
【24h】

Salt-leaching technique for the synthesis of porous poly(2,5-benzimidazole) (ABPBI) membranes for fuel cell application

机译:用于合成多孔聚(2,5-苯并咪唑)(ABPBI)膜燃料电池应用的盐浸出技术

获取原文
获取原文并翻译 | 示例
           

摘要

The first instance of synthesizing porous poly(2,5-benzimidazole) (ABPBI) membranes for high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs), using solvent evaporation/salt-leaching technique, is reported herein. Various ratios of sodium chloride/ABPBI were dissolved in methanesulfonic acid and cast into membranes by solvent evaporation, followed by porogen (salt) leaching by water washing. The membranes were characterized using SEM, FTIR, TGA, and DSC. The proton conductivity, water and acid uptake of the membranes were measured and the chemical stability was determined by Fenton's test. SEM images revealed strong dependence of sizes and shapes of pores on the salt/polymer ratios. Surface porosities of membranes were estimated with Nis Elements-D software; bulk porosities were measured by the fluid resaturation method. Thermogravimetric analysis showed enhanced dopant uptake with introduction of porosity, without the thermal stability of the membrane compromised. Incorporating pores enhanced solvent uptake and retention because of capillarity effects, enhancing proton conductivities of PEMs. Upon acid doping, a maximum conductivity of 0.0181 S/cm was achieved at 130 degrees C for a porous membrane compared with 0.0022 S/cm for the dense ABPBI membrane at the same temperature. Results indicated that with judicious optimization of porogen/polymer ratios, porous ABPBI membranes formed by salt-leaching could be suitably used in HT-PEMFCs. (C) 2017 Wiley Periodicals, Inc.
机译:本文报道了使用溶剂蒸发/盐浸出技术合成高温聚合物电解质电解质膜燃料电池(HT-PEMFC)的多孔聚(2,5-苯并咪唑)(ABPBI)膜的第一例。将各种氯化钠/ ABPBI溶解在甲磺酸中,并通过溶剂蒸发浇铸到膜中,然后通过水洗浸出孔胶(盐)浸出。使用SEM,FTIR,TGA和DSC表征膜。测量膜的质子电导率,水和酸摄取,并通过Fenton的测试测定化学稳定性。 SEM图像揭示了尺寸和孔的形状对盐/聚合物比率的强烈依赖。 NIS元素-D软件估计膜的表面孔隙率;通过流体resation方法测量散装孔隙率。热重分析显示出具有孔隙率的引入增强的掺杂剂摄取,而不会使膜的热稳定性受损。掺入孔隙增强的溶剂吸收和保留,因为毛细血管性效应,增强了PEM的质子传导性。在酸掺杂时,在相同温度下为致密ABPBI膜的0.0022 s / cm相比,在130℃下,在130℃下实现0.0181 s / cm的最大导电率。结果表明,随着致孔的明智优化,通过盐浸出形成的多孔ABPBI膜可适合于HT-PEMFC。 (c)2017 Wiley期刊,Inc。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号