首页> 外文期刊>Journal of Applied Polymer Science >Crystallization kinetics, morphology, and hydrolytic degradation of novel bio-based poly(lactic acid)/crystalline silk nano-discs nanobiocomposites
【24h】

Crystallization kinetics, morphology, and hydrolytic degradation of novel bio-based poly(lactic acid)/crystalline silk nano-discs nanobiocomposites

机译:新型生物基聚(乳酸)/晶蚕丝纳米圆盘纳米复合材料的结晶动力学,形态和水解降解

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, novel biodegradable crystalline silk nano-discs (CSNs) having a disc-like morphology have been utilized for fabrication of poly(lactic acid) (PLA) nanocomposites by melt-extrusion. The main focus is to investigate the effect of CSN on isothermal melt crystallization kinetics, spherulitic growth rates, morphology, and hydrolytic degradation of PLA. Spherulitic morphology and growth rates are examined over a wide range of crystallization temperatures (90-120 degrees C). With incorporation of CSN, the isothermal crystallization kinetics of PLA/CSN increases, however, the crystallization mechanism remains unaltered. The apparent activation energy and surface energy barrier for crystallization process decreases upon addition of CSNs. At lower isothermal crystallization temperatures (T-c) viz. (90-100 degrees C), reduced growth rates of PLA spherulites is observed. Both PLA and PLA/CSN exhibit highest crystallization rates at around approximate to 107 degrees C. The hydrolytic degradation rates calculated from molecular weight reduction shows that PLA/CSN nanocomposites' degradation rates are lower as compared to PLA in acidic, neutral, and alkaline media at pH=2, 7, and 12, respectively, due to hydrophobic nature of CSN. Scanning electron microscopy study demonstrated the surface erosion mechanism of hydrolytic degradation of PLA and PLA/CSN nanocomposites. This work provides valuable insight for the application and reclamation of PLA/CSN bionanocomposites in moist and wet working environments. (c) 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46590.
机译:在这项工作中,已经利用了具有盘状形态的新型可生物降解的结晶丝纳米盘(CSNS)通过熔融挤出制造聚(乳酸)(PLA)纳米复合材料。主要重点是探讨CSN对等温熔体结晶动力学,球晶生长率,形态和PLA水解降解的影响。在宽范围的结晶温度(90-120℃)上检查嗜球素形态和生长速率。通过掺入CSN,PLA / CSN的等温结晶动力学增加,然而,结晶机制保持不变。在加入CSN时,结晶过程的表观激活能量和表面能屏障降低。在较低等温结晶温度(T-C)viz。 (90-100℃),观察到降低PLA球晶的生长速率。 PLA和PLA / CSN两者和PLA / CSN在近似约107℃下表现出最高的结晶速率。根据分子量还原计算的水解降解率表明,与酸性,中性和碱性介质中的PLA相比,PLA / CSN纳米复合材料的降低率较低由于CSN的疏水性,分别在pH = 2,7和12处。扫描电子显微镜研究证明了PLA和PLA / CSN纳米复合材料的水解降解的表面侵蚀机理。这项工作为PLA / CSN BionanoC复合材料的应用和填写提供了有价值的见解,在潮湿和湿润的工作环境中的应用和填写。 (c)2018 Wiley期刊,Inc.J.Phill。聚合物。 SCI。 2018,135,46590。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号