首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >Free-standing cotton-derived carbon microfiber@nickel-aluminum layered double hydroxides composite and its excellent capacitive performance
【24h】

Free-standing cotton-derived carbon microfiber@nickel-aluminum layered double hydroxides composite and its excellent capacitive performance

机译:独立式棉花衍生的碳微纤维@镍铝层叠双氢氧化物复合材料及其优异的电容性能

获取原文
获取原文并翻译 | 示例
           

摘要

The main bottleneck of supercapacitor is its low energy density, mainly arising from the low capacity of the electrode materials. Although some pseudocapacitive metal oxide/hydroxides have been selected to improve the energy density of supercapacitor, their low conductivity and inferior reversibility still need to be considered. In this work, we prepared a free-standing composite comprised of NiAl-layered double hydroxide (LDH) nanoflakes decorated on a cotton derived carbon microfiber (CMF@NiAl-LDH) via a facile hydrothermal method. The large-scale and compressible cotton derived carbon fiber with connected three-dimensional pores served as conductive backbones for the growth of the NiAl-LDH nanoflakes. It can not only improve the conductivity of NiAl-LDH, but also amend the distribution of NiAl-LDH nanosheets, leading to both rapid electron and electrolyte ions transport kinetics. The abundant space among NiAl-LDH nanoflakes as well as developed 3D pores of CMF can accommodate the volume expansion of NiAl-LDH during long lifespan cycling. Benefited from these rational design, the as-prepared CMF@NiAl-LDH electrode exhibited significantly improved capacitive performance in terms of high specific capacitance (1667 F g(-1) at 1 A g(-1)), excellent rate performance (68.7% retained at 15 A g(-1)) and remarkable cyclic stability (105.4% maintained after 2000 cycles) in aqueous electrolytes. The assembled CMF@ NiAl-LDH//porous carbon asymmetric supercapacitor can deliver a large energy density of 45.2 Wh Kg(-1). This investigation suggests that the prepared CMF@ NiAl-LDH electrode offers a great potential in large-scale energy storage device applications. (C) 2019 Elsevier B.V. All rights reserved.
机译:超级电容器的主要瓶颈是其低能量密度,主要引起电极材料的低容量。虽然已经选择了一些假壳种金属氧化物/氢氧氧化物以改善超级电容器的能量密度,但它们仍然需要考虑它们的低导电性和劣质性。在这项工作中,我们制备了由由棉衍生的碳微纤维(CMF @ Nial-LDH)装饰的Nial层状双氢氧化物(LDH)纳米薄片组成的独立式复合材料,通过容易水热法。大规模和可压缩棉衍生的碳纤维,具有连接的三维孔,用作Nial -LDH纳米薄片的生长的导电骨架。它不仅可以提高Nial-LDH的电导率,还可以修改Nial-LDH纳米片的分布,导致快速电子和电解质离子输送动力学。 NIAL-LDH纳米薄片中的丰富空间以及CMF的3D孔可以适应NIAL-LDH的体积膨胀,循环循环。从这些合理设计中受益,AS制备的CMF @ Nial-LDH电极在高特定电容(1667V(-1)的1A(-1))方面表现出显着提高的电容性能,优异的速率性能(68.7在含水电解质中,%保留在15Ag(-1))和显着的循环稳定性(在2000次循环后保持105.4%)。组装的CMF @ Nial -LDH //多孔碳不对称超级电容器可以提供大的能量密度为45.2WH kg(-1)。本研究表明,制备的CMF @ Nial-LDH电极在大型能量存储装置应用中提供了很大的潜力。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号