...
首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >Multi-scale crystal plasticity finite element method (CPFEM) simulations for shear band development in aluminum alloys
【24h】

Multi-scale crystal plasticity finite element method (CPFEM) simulations for shear band development in aluminum alloys

机译:铝合金剪切带开发的多尺度晶体塑性有限元方法(CPFEM)模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Multi-scale Crystal Plasticity Finite Element Method (CPFEM) simulations including macro-, meso- and microscale are applied to study the shear band development in cold-rolled AA5182-H28 aluminum alloy sheets under simple shear along various directions with respect to the rolling direction. The resolution and the computational cost in predicting the development of shear bands are compared among the three simulation scales. In macro-, meso- or microscale, each element represents an aggregate of polycrystal, a single crystal or part of a grain, respectively. The constitutive response of an integration point is thus described by the Taylor-type polycrystalline model in the macroscale, or by the single crystal constitutive model in the two finer scales. A common feature predicted by simulations at the three scales is that the development of shear bands is highly anisotropic. This is most clearly revealed by simulations at the microscale: (1) no shear band forms along RD (Rolling Direction); (2) some shear bands develop then delocalize afterwards along RD20 (20 degrees from RD); (3) severe shear bands develop along RD45 (45 degrees from RD) and (4) some weak and discrete shear bands form along TD (Transverse Direction). However, the capability to capture the development of shear bands with different degrees of localization is not the same for the three simulation scales: for cases with severe/no shear band forming, simulations in all the three scales can capture the features, however, for cases with weak shear banding, only the microscale simulations can give right predictions. The cost of the three scales is also quite different: the computation time increases nearly an order of magnitude when the simulation runs at a lower scale. Therefore, in view of both the resolution and the cost, appropriate simulation scale can be chosen to study the development of shear bands according to the degree of localization: for cases with severe/no shear band forming, a macroscale simulation with Taylor-type model is sufficient to give good predictions; but for cases with weak shear bands formation, a microscale simulation is needed. For this strategy to work, a quick estimation is needed first for the extent of shear band development for all cases of concern, which can be accomplished using the one-element method proposed by Wu et al. [29]. (C) 2017 Elsevier B.V. All rights reserved.
机译:包括宏观,中间和微观尺寸的多尺度晶体塑性有限元方法(CPFEM)模拟,用于沿着各种方向相对于轧制方向研究冷轧AA5182-H28铝合金板中的剪切带开发。在三个模拟尺度中比较了预测剪切带开发的分辨率和计算成本。在宏观,中间或微尺寸中,每个元素分别表示多晶,单晶或一部分的聚合物。因此,在宏观中的泰勒型多晶模型或通过两个更精细的尺度中的单晶本构模型描述了积分点的组成响应。通过三个尺度模拟预测的共同特征是剪切带的发展是高度各向异性的。在微观尺度的模拟中最清楚地揭示了这一点:(1)没有沿RD形成剪切带(滚动方向); (2)一些剪切带,随后沿RD20(从RD 20度)后删除划分。 (3)严重剪切带沿RD45(从RD 45度)和(4)沿TD(横向)形成一些弱和离散的剪切带。但是,对于三种仿真尺度的不同程度的剪切带开发的能力不一样:对于具有严重/无剪切带的情况,所有三个尺度的模拟都可以捕获该功能具有弱剪切绑带的案例,只有微观模拟可以给出正确的预测。三个尺度的成本也非常不同:当模拟以较低的尺度运行时,计算时间几乎增加了几个级别。因此,鉴于分辨率和成本,可以选择适当的仿真规模来根据本地化程度研究剪切带的开发:对于严重/无剪切带形成的情况,具有泰勒型模型的Macroscale仿真足以提供良好的预测;但对于剪力带形成弱剪力带的情况,需要微观模拟。对于该策略工作,首先需要快速估计,以便为所有问题的剪切带开发的程度,这可以使用Wu等人提出的一个元素方法来实现。 [29]。 (c)2017年Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号