...
首页> 外文期刊>Journal of Geophysical Research. Biogeosciences >Mathematical Modelling of Arctic Polygonal Tundra with Ecosys: 2. Microtopography Determines How CO_2 and CH_4 Exchange Responds to Changes in Temperature and Precipitation
【24h】

Mathematical Modelling of Arctic Polygonal Tundra with Ecosys: 2. Microtopography Determines How CO_2 and CH_4 Exchange Responds to Changes in Temperature and Precipitation

机译:北极多边形苔原与eCoSys的数学建模:2。微复印件确定Co_2和CH_4交换如何响应温度和降水的变化

获取原文
获取原文并翻译 | 示例
           

摘要

Differences of surface elevation in arctic polygonal landforms cause spatial variation in soil water contents (θ), active layer depths (ALD), and thereby in CO_2 and CH_4 exchange. Here we test hypotheses in ecosys for topographic controls on CO_2 and CH_4 exchange in trough, rim, and center features of low-and flat-centered polygons (LCP and FCP) against chamber and eddy covariance (EC) measurements during 2013 at Barrow, Alaska. Larger CO_2 influxes and CH_4 effluxes were measured with chambers and modeled with ecosys in LCPs than in FCPs and in lower features (troughs) than in higher (rims) within LCPs and FCPs. Spatially aggregated CO_2 and CH_4 fluxes from ecosys were significantly correlated with EC flux measurements. Lower features were modeled as C sinks (52-56 g Cm~(-2) yr~(-1)) and CH_4 sources (4-6gCm~(-2) yr~(-1)), and higher features as near C neutral (-2-15 g C m~(-2) yr~(-1)) and CH_4 neutral (0.0-0.1 g C m~(-2) yr~(-1)). Much of the spatial and temporal variations in CO_2 and CH_4 fluxes were modeled from topographic effects on water and snow movement and thereby on θ, ALD, and soil O_2 concentrations. Model results forced with meteorological data from 1981 to 2015 indicated increasing net primary productivity in higher features and CH_4 emissions in some lower and higher features since 2008, attributed mostly to recent rises in precipitation. Small-scale variation in surface elevation causes large spatial variation of greenhouse gas (GHG) exchanges and therefore should be considered in estimates of GHG exchange in polygonal landscapes.
机译:北极多边形地貌中表面升高的差异导致土壤水分含量(θ),有源层深度(ALD)的空间变化,从而在CO_2和CH_4交换中。在这里,我们在2013年在Barrow,Alaska的槽,RIM和CH_4在槽,边缘和CH_4在槽,RIM和CH_4交换中测试ECOSICS的正版控制的正版控制的假设。用腔室测量较大的CO_2涌入和CH_4渗透物,并在LCP中的生态系统建模,而不是在FCP中,并且在LCP和FCP中的较高(RIM)中的较低特征(槽)。来自ECOSYS的空间聚合的CO_2和CH_4助熔剂与EC助熔剂测量显着相关。较低的特征被建模为C水槽(52-56克CM〜(-2)YR〜(-1))和CH_4源(4-6GCM〜(-2)YR〜(-1))和更高的功能C中性(-2-15g C m〜(-2)Yr〜(-1))和CH_4中性(0.0-0-1g C m〜(-2)Yr〜(-1))。 CO_2和CH_4助熔剂中的大部分空间和时间变化是从水和雪运动的地形影响,从而在θ,ald和土壤O_2浓度上进行建模。从1981年到2015年的气象数据强制模型结果表明,自2008年以来的一些较低特征和更高的特征中的净初级生产率提高了净初级生产率,主要归因于近期降水中的升高。表面高度的小规模变化导致温室气体(GHG)交换的大量空间变化,因此应考虑在多边形景观中GHG交换的估计中。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号