...
首页> 外文期刊>Journal of Materials Science >Air-processed, large grain perovskite films with low trap density from perovskite crystal engineering for high-performance perovskite solar cells with improved ambient stability
【24h】

Air-processed, large grain perovskite films with low trap density from perovskite crystal engineering for high-performance perovskite solar cells with improved ambient stability

机译:空气加工,大谷粒钙钛矿薄膜,具有低钙钛矿晶体工程,用于高性能钙钛矿太阳能电池,具有改善的环境稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

High-performance perovskite solar cell processed in ambient air is a big challenge due to the sensitivity of perovskite films to air. Many defects are generated easily at grain boundaries and in the perovskite films by conventional molecular/ion precursor solution mixing methods (i.e., solution mixing-based method), which restrict its stability in air and photovoltaic performance with most power conversion efficiency less than 15%. In this work, we develop a facile method for air-processed, highly crystalline, quasi-3D perovskite film with large grain size (over 6.6 times bigger than that from control conventional method) and improved ambient air stability by phenylethylammonium (PEA)-doped MA(1-x)PEA(x)PbI(3) perovskite crystal engineering. Furthermore, benefiting from PEA(+) doping and crystal engineering, the trap density decreases 50% compared with control. Consequently, with the optimal concentration of PEA doping, the power conversion efficiency increases from 15.6% for conventional solution mixing-based perovskite solar cells to 17.6% for crystal engineering-based ones with significantly improved moisture stability. The perovskite crystal engineering-based solar cells without any encapsulation retain 75% of the initial performance after 30-day storage in ambient air under a relative humidity of 50 +/- 10%, and two times faster degradation rate is observed for control, conventional solution mixing-based perovskite solar cells when compared with crystal engineering-based ones.
机译:由于钙钛矿薄膜到空气的敏感性,在环境空气中加工的高性能钙钛矿太阳能电池是一个很大的挑战。通过常规分子/离子前体溶液混合方法(即,基于溶液混合的方法)在晶粒边界和钙钛矿膜中容易产生许多缺陷,这限制了空气和光伏性能的稳定性,大多数功率转换效率小于15% 。在这项工作中,我们开发了具有大粒度的空气加工,高晶体,准3D钙钛矿薄膜的容易方法(比对照常规方法的比率大于6.6倍),并通过苯基乙基铵(PEA)改善了环境空气稳定性 - 掺杂马(1-X)豌豆(x)PBI(3)钙钛矿水晶工程。此外,受益于豌豆(+)掺杂和晶体工程,与对照相比陷阱密度降低了50%。因此,随着豌豆掺杂的最佳浓度,常规溶液混合的钙钛矿太阳能电池的功率转换效率从15.6%增加到晶体工程的基于晶体工程的稳定性稳定性的17.6%。无需任何封装的基于钙钛矿晶体工程的太阳能电池在相对湿度下在环境空气中30天储存后的初始性能的75%,并且观察到对控制,常规的速度更快的降解速率更快的降解速率与基于晶体工程的液体相比,溶液混合的钙钛矿太阳能电池。

著录项

  • 来源
    《Journal of Materials Science》 |2019年第18期|共12页
  • 作者单位

    Huazhong Univ Sci &

    Technol Sch Mat Sci &

    Engn State Key Lab Mat Proc &

    Die &

    Mould Technol Wuhan 430074 Hubei Peoples R China;

    Huazhong Univ Sci &

    Technol Sch Mat Sci &

    Engn State Key Lab Mat Proc &

    Die &

    Mould Technol Wuhan 430074 Hubei Peoples R China;

    Huazhong Univ Sci &

    Technol Sch Mat Sci &

    Engn State Key Lab Mat Proc &

    Die &

    Mould Technol Wuhan 430074 Hubei Peoples R China;

    Huazhong Univ Sci &

    Technol Sch Mat Sci &

    Engn State Key Lab Mat Proc &

    Die &

    Mould Technol Wuhan 430074 Hubei Peoples R China;

    Huazhong Univ Sci &

    Technol Sch Mat Sci &

    Engn State Key Lab Mat Proc &

    Die &

    Mould Technol Wuhan 430074 Hubei Peoples R China;

    Shanxi Univ Sci &

    Technol Shanxi Key Lab Chem Addit Ind Xian 710021 Shaanxi Peoples R China;

    Huazhong Univ Sci &

    Technol Sch Mat Sci &

    Engn State Key Lab Mat Proc &

    Die &

    Mould Technol Wuhan 430074 Hubei Peoples R China;

    Huazhong Univ Sci &

    Technol Sch Mat Sci &

    Engn State Key Lab Mat Proc &

    Die &

    Mould Technol Wuhan 430074 Hubei Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号