...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Tailored nanoscale interface in a hierarchical carbon nanotube supported MoS2@MoO2-C electrode toward high performance sodium ion storage
【24h】

Tailored nanoscale interface in a hierarchical carbon nanotube supported MoS2@MoO2-C electrode toward high performance sodium ion storage

机译:在等级碳纳米管中量身定制的纳米级接口支持MOS2 @ Moo2-C电极,朝向高性能钠离子储存

获取原文
获取原文并翻译 | 示例
           

摘要

Tailoring heterointerfaces at atomic and molecular levels in electrode materials for superior structural stability and enhanced power/energy densities is desired yet still challenging for achieving ultrafast and stable Na-ion batteries. Herein, an MoS2/MoO2 heterointerface is designed and created, in which ultrafine MoO2 nanocrystals are tightly anchored on ultrathin MoS2 nanosheets, with the assistance of an N-doped carbon protecting layer, on flexible carbon nanotubes. The electrode exhibits a high specific capacity of similar to 700 mA h g(-1) at 0.2 A g(-1) and an ultra-long cycling stability over 6000 cycles at 5 A g(-1). Moreover, an excellent rate capability of similar to 375 mA h g(-1) at 10 A g(-1) is retained. As evidenced by both experiments and density functional theory (DFT) calculations, the heterointerface could not only introduce an electric field to reduce the charge transport barrier, but also provide extra active sites to adsorb Na+. Meanwhile, within the designed nanoarchitecture, the MoO2 nanocrystals can effectively reduce the aggregation of MoS2 during charge/discharge processes, and adsorb polysulfide to improve the reversibility. This work provides a fundamental understanding of engineering heterointerfaces at the atomic level for enhanced Na+ storage and transport, which can be extended to other functional electrode materials.
机译:期望在电极材料中剪裁异助性和用于卓越的结构稳定性和增强的功率/能量密度的电极材料中的分子水平仍然具有挑战性,以实现超快和稳定的Na离子电池。在此,设计并产生了MOS2 / MOO2异偶表面,其中超细MOO2纳米晶体在柔性碳纳米管上的辅助碳保护层的辅助下紧密地锚定在超薄MOS2纳米晶片上。电极具有与0.2Ag(-1)的700mA H G(-1)相似的高比容量,并且在5Ag(-1)下超过6000次循环的超长循环稳定性。此外,保留了10Ag(-1)的相似与375mA H(-1)的优异速率能力。如实验和密度泛函理论(DFT)计算所证明的,异元面不仅可以引入电场以减少电荷传输屏障,而且还提供额外的活性位点以吸附Na +。同时,在设计的纳米建筑内,MOO2纳米晶体可以在充电/放电过程中有效地降低MOS2的聚集,并吸附多硫化物以改善可逆性。这项工作为增强的NA +储存和运输的原子水平提供了对工程异料蔗种的基本理解,其可以扩展到其他功能电极材料。

著录项

  • 来源
  • 作者单位

    Shandong Univ Sch Environm Sci &

    Engn Shandong Key Lab Water Pollut Control &

    Resource Qingdao 26623 Peoples R China;

    Shanghai Jiao Tong Univ Sch Chem &

    Chem Engn Shanghai Electrochem Energy Devices Res Ctr Shanghai 200240 Peoples R China;

    Shandong Univ Sch Environm Sci &

    Engn Shandong Key Lab Water Pollut Control &

    Resource Qingdao 26623 Peoples R China;

    Shanghai Jiao Tong Univ Sch Chem &

    Chem Engn Shanghai Electrochem Energy Devices Res Ctr Shanghai 200240 Peoples R China;

    Boise State Univ Micron Sch Mat Sci &

    Engn Boise ID 83725 USA;

    Boise State Univ Micron Sch Mat Sci &

    Engn Boise ID 83725 USA;

    Shandong Univ Sch Environm Sci &

    Engn Shandong Key Lab Water Pollut Control &

    Resource Qingdao 26623 Peoples R China;

    Shandong Univ Sch Environm Sci &

    Engn Shandong Key Lab Water Pollut Control &

    Resource Qingdao 26623 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号