...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >High efficiency electrochemical reduction of CO2 beyond the two-electron transfer pathway on grain boundary rich ultra-small SnO2 nanoparticles
【24h】

High efficiency electrochemical reduction of CO2 beyond the two-electron transfer pathway on grain boundary rich ultra-small SnO2 nanoparticles

机译:高效电化学减少二氧化碳超出二氧化体边界富含超小型SnO2纳米粒子的二氧化体转移途径

获取原文
获取原文并翻译 | 示例
           

摘要

Well crystallized and interconnected SnO2 nanoparticles (5 nm) were synthesized via oxidation of exfoliated SnS2 sheets. The SnO 2 nanoparticles exhibit a high total faradaic efficiency (FE) of 97% towards electrochemical reduction of CO2 at -0.95 V vs. the reversible hydrogen electrode (RHE). The main product ratio of CO/HCOO- which intrinsically correlates to the surface SnOx/Sn ratio variation varies with the applied potential. Beyond CO and HCOO- products formed via the two-electron transfer pathway, hydrocarbons and oxygenates are produced. The formation of hydrocarbon (CH4) versus oxygenate (C2H5OH) depends on the choice of electrolyte (KOH vs. KHCO3), both of which can reach a maximal faradaic efficiency of 10%. The distinctive grain boundary and exposed corner/step sites in the interconnected SnO2 nanoparticles contribute to the high FE of CO2 reduction and unique selectivity.
机译:通过氧化的SNS2片来合成良好的结晶和相互连接的SnO2纳米颗粒(< 5nm)。 SnO 2纳米颗粒在-0.95V与可逆氢电极(RHE)上的电化学还原,SNO 2纳米颗粒具有97%的高总效率(Fe)。 Co / HCOO的主要产品比与表面SNOX / SN比变化有关的主要产品比例随所施加的电位而变化。 通过通过双电子转移途径,烃和含氧化形成的CO和HCOO-产品。 烃(CH 4)的形成与含氧化合物(C 2 HOH)取决于电解质(KOH与KHCO 3)的选择,两者都可以达到10%的最大法效率。 相互连接的SnO2纳米颗粒中的独特晶界和暴露的角落/步部位有助于CO 2的高FE和独特的选择性。

著录项

  • 来源
  • 作者单位

    Sichuan Univ Coll Polymer Sci &

    Engn State Key Lab Polymer Mat Engn Chengdu 610065 Sichuan Peoples R China;

    Univ Illinois Dept Chem &

    Biomol Engn 600 South Mathews Ave Urbana IL 61801 USA;

    Oak Ridge Natl Lab Mat Sci &

    Technol Div Oak Ridge TN 37831 USA;

    Sichuan Univ Coll Polymer Sci &

    Engn State Key Lab Polymer Mat Engn Chengdu 610065 Sichuan Peoples R China;

    Rice Univ Dept Mat Sci &

    Nano Engn 6100 Main St Houston TX 77005 USA;

    Rice Univ Dept Mat Sci &

    Nano Engn 6100 Main St Houston TX 77005 USA;

    Rice Univ Dept Mat Sci &

    Nano Engn 6100 Main St Houston TX 77005 USA;

    Sichuan Univ Coll Polymer Sci &

    Engn State Key Lab Polymer Mat Engn Chengdu 610065 Sichuan Peoples R China;

    Univ Cincinnati Dept Chem &

    Environm Engn Cincinnati OH 45221 USA;

    Univ Illinois Dept Chem &

    Biomol Engn 600 South Mathews Ave Urbana IL 61801 USA;

    Rice Univ Dept Mat Sci &

    Nano Engn 6100 Main St Houston TX 77005 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号