...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Activity enhancement via borate incorporation into a NiFe (oxy)hydroxide catalyst for electrocatalytic oxygen evolution
【24h】

Activity enhancement via borate incorporation into a NiFe (oxy)hydroxide catalyst for electrocatalytic oxygen evolution

机译:通过硼酸盐掺入氢催化氧催化剂中的活性增强

获取原文
获取原文并翻译 | 示例
           

摘要

The oxygen evolution reaction (OER) is a key process in electrocatalysis and is critical for achieving the cost-effective conversion of renewable electricity to chemicals and fuels. However, the high overpotential () originates from poor charge-transfer ability and low catalytic activity may lead to high power consumption. Herein, we alleviate these issues by introducing borate into the NiFe (oxy)hydroxide framework. Our density functional theory (DFT) calculations demonstrated that the borate could be efficiently adsorbed onto the Ni/NiFe (oxy)hydroxide surface. Microscopically, the adsorbed borate can induce a favorable electronic structure for the Ni active sites. Meanwhile, the macroscopic charge-transfer ability of this synthesized catalyst has been dramatically increased. Hence, the catalytic performance of this material is improved compared with its NiFe counterpart: we achieved a higher OER activity with an ultralow of only 230 mV at 10 mA cm(-2) on a glassy carbon electrode (GCE) and of 200 mV at 10 mA cm(-2) on Ni foam in alkaline medium. Moreover, this borate mediated NiFe (oxy)hydroxide is very stable: no appreciable degradation is observed after more than 110 hours of operation.
机译:氧气进化反应(oer)是电催化的关键方法,对于实现可再生电力与化学品和燃料的成本有效转化至关重要。然而,高过电()源自电荷转移能力差,低催化活性可能导致高功耗。在此,我们通过将硼酸盐引入NiFe(氧)氢氧化物框架来缓解这些问题。我们的密度泛函理论(DFT)计算证明硼酸盐可以有效地吸附到Ni / NiFe(氧)氢氧化物表面上。显微镜地,吸附的硼酸盐可以诱导Ni活性位点的有利电子结构。同时,该合成催化剂的宏观电荷转移能力已显着增加。因此,与其NiFE对应物相比,这种材料的催化性能得到改善:我们在玻璃电极(GCE)和200mV时,在10 mA cm(-2)下仅使用230 mV的超级oer活性。在碱性介质中的Ni泡沫上10 mA cm(-2)。此外,这种硼酸盐介导的NiFE(氧)氢氧化物非常稳定:在术后超过110小时后未观察到明显的降解。

著录项

  • 来源
  • 作者单位

    Nankai Univ Inst Photoelect Thin Film Devices &

    Technol Key Lab Photoelect Thin Film Devices &

    Technol Tianjin 300071 Peoples R China;

    KAUST Phys Sci &

    Engn Div PSE KCC Thuwal 239556900 Saudi Arabia;

    Nankai Univ Inst Photoelect Thin Film Devices &

    Technol Key Lab Photoelect Thin Film Devices &

    Technol Tianjin 300071 Peoples R China;

    Nankai Univ Inst Photoelect Thin Film Devices &

    Technol Key Lab Photoelect Thin Film Devices &

    Technol Tianjin 300071 Peoples R China;

    Nankai Univ Inst Photoelect Thin Film Devices &

    Technol Key Lab Photoelect Thin Film Devices &

    Technol Tianjin 300071 Peoples R China;

    Chinese Acad Sci Inst High Energy Phys Beijing Synchrotron Radiat Facil Beijing 100049 Peoples R China;

    Nankai Univ Inst Photoelect Thin Film Devices &

    Technol Key Lab Photoelect Thin Film Devices &

    Technol Tianjin 300071 Peoples R China;

    Nankai Univ Inst Photoelect Thin Film Devices &

    Technol Key Lab Photoelect Thin Film Devices &

    Technol Tianjin 300071 Peoples R China;

    Nankai Univ Inst Photoelect Thin Film Devices &

    Technol Key Lab Photoelect Thin Film Devices &

    Technol Tianjin 300071 Peoples R China;

    KAUST Phys Sci &

    Engn Div PSE KCC Thuwal 239556900 Saudi Arabia;

    Fudan Univ Dept Macromol Sci State Key Lab Mol Engn Polymers Shanghai 200438 Peoples R China;

    Nankai Univ Inst Photoelect Thin Film Devices &

    Technol Key Lab Photoelect Thin Film Devices &

    Technol Tianjin 300071 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号