首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >A novel 3-dimensional graphene-based membrane with superior water flux and electrocatalytic properties for organic pollutant degradation
【24h】

A novel 3-dimensional graphene-based membrane with superior water flux and electrocatalytic properties for organic pollutant degradation

机译:基于三维石墨烯的膜,具有优异的水通量和有机污染物降解的电催化性能

获取原文
获取原文并翻译 | 示例
           

摘要

Graphene-based separation membranes exhibit great potential for the application of wastewater purification, but it is difficult to achieve a balance between water flux and rejection. To overcome the trade-off effect between permeability and selectivity, a novel 3-dimensional graphene-based membrane with superior water flux was fabricated using a simple, viable and green method. In addition, electrocatalytic technology is coupled to the membrane separation process. Comprehensive characterization indicates that the TiO2 nanoparticles were successfully mounted on the moderately reduced graphene oxide (rGO) surface. By introducing oxygen-functionalized carbon nanotubes (oCNTs), the rGO-TiO2/oCNT membrane has more pronounced 3-dimensional water channels. More importantly, the rGO-TiO2/oCNT membrane acts as both a separation membrane and an anode to couple the membrane process to the electrocatalytic technique. The small-molecule contaminants that are difficult to remove by physical exclusion would be degraded when the matter passes through the channels with the electrocatalyst. The TiO2 nanoparticles act as both a nano-wedge to expand the water channels and an electrocatalyst to promote the degradation of the contaminants. The rGO-TiO2/oCNT membranes showed a removal rate up to 95% at a high liquid hourly space velocity of 88 h(-1) under the applied electrocatalysis conditions, which is two times more than that obtained without the electrocatalyst. The rGO-TiO2/oCNT membrane could not only achieve a superior water flux (the maximum was 44.14 L m(-2) h(-1) bar(-1)) but also maintain excellent dye removal performance (90%) via membrane process coupling electrocatalysis. The optimum component ratio of the rGO-TiO2/oCNT membrane was investigated, and it was found that 30% oCNT content accounts for a stable catalytic performance. The graphene-based membrane coupled electrocatalysis in this study would provide a new approach to break the bottleneck of the trade-off effect and inspire the design of a functional membrane.
机译:基于石墨烯的分离膜表现出施用废水纯化的巨大潜力,但难以在水通量和排斥之间进行平衡。为了克服渗透性和选择性之间的权衡效果,使用简单,可行和绿色的方法制造一种新的三维石墨烯基膜,具有卓越的水通量。此外,电催化技术耦合到膜分离过程。综合表征表明TiO2纳米颗粒成功地安装在适度的石墨烯氧化物(RGO)表面上。通过引入氧官能化碳纳米管(OCNT),RGO-TiO2 / OCNT膜具有更明显的三维水通道。更重要的是,RGO-TiO2 / OCNT膜用作分离膜和阳极,以将膜过程耦合到电催化技术。当物质通过电催化剂的通道通过通道时,难以通过物理排除难以除去的小分子污染物。 TiO2纳米颗粒充当纳米楔以扩展水通道和电催化剂以促进污染物的降解。 Rgo-TiO 2 / OCNT膜在施加的电常放条件下,在施加的电常放条件下,在88小时(-1)的高液小时间速度下的去除率高达95%,这比没有电催化剂获得的两倍。 Rgo-TiO2 / OCNT膜不仅可以实现优异的水通量(最大为44.14 L m(-2)H(-1)杆(-1)),还保持出色的染料去除性能(& 90%)通过膜处理偶联电催化。研究了Rgo-TiO2 / OCNT膜的最佳成分比,发现30%OCNT含量占稳定的催化性能。本研究中基于石墨烯的膜耦合电催化将提供一种打破权衡效果的瓶颈的新方法,并激发功能膜的设计。

著录项

  • 来源
  • 作者单位

    Tianjin Polytech Univ Sch Mat Sci &

    Engn State Key Lab Separat Membranes &

    Membrane Proc Tianjin 300387 Peoples R China;

    Tianjin Polytech Univ Sch Mat Sci &

    Engn State Key Lab Separat Membranes &

    Membrane Proc Tianjin 300387 Peoples R China;

    Tianjin Polytech Univ Sch Mat Sci &

    Engn State Key Lab Separat Membranes &

    Membrane Proc Tianjin 300387 Peoples R China;

    Tianjin Polytech Univ Sch Mat Sci &

    Engn State Key Lab Separat Membranes &

    Membrane Proc Tianjin 300387 Peoples R China;

    Tianjin Polytech Univ Sch Mat Sci &

    Engn State Key Lab Separat Membranes &

    Membrane Proc Tianjin 300387 Peoples R China;

    Tianjin Polytech Univ Sch Mat Sci &

    Engn State Key Lab Separat Membranes &

    Membrane Proc Tianjin 300387 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号