首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >The doping of phosphorus atoms into graphitic carbon nitride for highly enhanced photocatalytic hydrogen evolution
【24h】

The doping of phosphorus atoms into graphitic carbon nitride for highly enhanced photocatalytic hydrogen evolution

机译:用于高增强的光催化氢进化的磷原子掺杂到石墨碳氮化物中

获取原文
获取原文并翻译 | 示例
           

摘要

Graphitic carbon nitride (g-C3N4) is a promising candidate for visible-light-driven photocatalytic water splitting. However, some inherent drawbacks of g-C3N4, such as poor charge separation and transfer efficiencies, limited optical absorption and a low surface area, restrain its performance in photocatalytic hydrogen evolution. To solve these problems, in this study, a series of phosphorus (P) doped g-C3N4 (PCN) samples are prepared by direct thermolysis of a mixture of urea and 4-(diphenylphosphino)benzoic acid (4-DPPBA). P atoms have been successfully introduced into the framework of g-C3N4 by forming P-N bonds. The as-obtained samples are investigated for photocatalytic water splitting under visible light. Results reveal that the optimal PCN sample exhibits a high hydrogen evolution rate of 2610.80 mol h(-1) g(-1) ( 420 nm) in the presence of a sacrificial agent, which is almost 10 times higher than that of bare g-C3N4 (265.00 mol h(-1) g(-1)). This is mainly ascribed to the fact that electron-rich P atoms, acting as an electron donor, efficiently trap photogenerated holes and substantially suppress the recombination of charge carriers. Besides, the introduction of P atoms modifies the surface properties, narrows the band gap and increases the electrical conductivity. A possible mechanism is proposed for the photocatalytic reaction over PCN samples. Moreover, the PCN samples maintain high photocatalytic activity and chemical stability after recycling experiments, making them promising materials with broad application prospects in solar-to-fuel conversion.
机译:石墨碳氮化物(G-C3N4)是可见光光催化水分裂的有希望的候选者。然而,G-C3N4的一些固有缺点,例如差的电荷分离和转移效率,有限的光学吸收和低表面积,抑制其在光催化氢进化中的性能。为了解决这些问题,在本研究中,通过直接热解尿素和4-(二苯基膦基)苯甲酸(4-DPPBA)的混合物来制备一系列磷(P)掺杂G-C3N4(PCN)样品。通过形成P-N键已经成功地引入了G-C3N4的框架中。研究了作为光催化水分解在可见光下的可获得的样品。结果表明,最佳PCN样品在牺牲剂存在下表现出2610.80molH(-1)G(-1)(420nm)的高氢进化速率,这几乎比裸G-高10倍C3N4(265.00 mol H(-1)g(-1))。这主要是归因于电子富含电子的P原子,作为电子给体,有效地捕获光生孔并基本上抑制电荷载体的重组。此外,P原子的引入改变了表面性质,使带隙变窄并增加电导率。提出了在PCN样品上的光催化反应的可能机制。此外,PCN样品在再循环实验后保持高光催化活性和化学稳定性,使其具有广泛的应用前景,在太阳能转换中具有广泛的应用前景。

著录项

  • 来源
  • 作者单位

    Univ Sci &

    Technol China Hefei Natl Lab Phys Sci Microscale Div Nanomat &

    Chem Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Hefei Natl Lab Phys Sci Microscale Div Nanomat &

    Chem Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Hefei Natl Lab Phys Sci Microscale Div Nanomat &

    Chem Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Hefei Natl Lab Phys Sci Microscale Div Nanomat &

    Chem Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Hefei Natl Lab Phys Sci Microscale Div Nanomat &

    Chem Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Hefei Natl Lab Phys Sci Microscale Div Nanomat &

    Chem Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Hefei Natl Lab Phys Sci Microscale Div Nanomat &

    Chem Hefei 230026 Anhui Peoples R China;

    Sun Yat Sen Univ Affiliated Hosp 1 Dept Breast &

    Thyroid Surg Guangzhou 510080 Guangdong Peoples R China;

    Univ Sci &

    Technol China Hefei Natl Lab Phys Sci Microscale Div Nanomat &

    Chem Hefei 230026 Anhui Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号