...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >In situ probing of interfacial kinetics for studying the electrochemical properties of active nano/micro-particles and the state of Li-ion batteries
【24h】

In situ probing of interfacial kinetics for studying the electrochemical properties of active nano/micro-particles and the state of Li-ion batteries

机译:原位探测研究活性纳米/微颗粒的电化学性能和锂离子电池状态的互晶动力学

获取原文
获取原文并翻译 | 示例
           

摘要

It is critical to monitor the state of health (SOH) of the Li-ion batteries to ensure a safe operation and to extend the service life of the batteries in electric vehicles. In this work, we demonstrated that the equivalent capacitance (C-p) and resistance (R-p) of the electrode interface derived using a first-order RC equivalent circuit under a large galvanostatic pulse (LGPM) condition can be correlated with SOH. For both the cathode and the anode, the interfacial kinetics of Li-ions were analyzed to study the electrochemical properties of active particles. The RC parameters of the equivalent circuit were correlated with the diffusion kinetics of Li-ions near the interface between the electrolyte and the active nano/micro-particles during fast charging/discharging. For fresh LiFePO4 (LFP)/Li half-cells, the values and the change of C-p and R-p were explained using the hypothesis of interparticle ion transport under a non-equilibrium condition. For graphite/Li half-cells, the buffering of Li-ions by the solid-electrolyte interphase (SEI) layer was speculated to affect C-p and R-p under a non-equilibrium condition. In commercial LFP/graphite batteries, the C-p values of unhealthy batteries were found to be higher than those of healthy batteries. In further tests, the C-p values of the half cells with the graphite anode recovered from the unhealthy batteries were found to be higher than those of the half cells with graphite from the healthy batteries. The half cells with LFP from the unhealthy batteries behaved similarly to those with LFP from the healthy batteries. With additional analysis on the microstructure, we proposed that the deterioration of the LFP/graphite batteries was mostly due to the formation of a thicker SEI on the graphite anode. The method developed in this work can be integrated in EVs at a low calculation cost. More importantly, we gained a better understanding of the interfacial kinetics of Li-ions during a non-equilibrium process.
机译:关键是要监测锂离子电池的健康状况(SOH)的状态,以确保安全运行并延长电池的使用寿命,在电动汽车。在这项工作中,我们表明,等效电容(C-p)和电极界面的电阻(R-P),使用一阶RC等效电路的大恒电流脉冲(LGPM)条件可以与SOH相关联下得出的。用于阴极和阳极两者,锂离子的界面动力学进行分析,以研究活性颗粒的电化学性质。的等效电路的RC参数在快速充电/放电与电解质与活性纳米/微米颗粒之间的界面附近的锂离子的扩散动力学相关。对于新鲜的LiFePO 4(LFP)/锂半电池,值和C-p和R-p的变化是使用间离子迁移的假说解释非平衡条件下进行。对于石墨/锂半电池,锂离子通过的固体电解质界面的缓冲(SEI)层推测影响的非平衡条件下,C-p和R-P。在商业LFP /石墨电池,发现电池不健康的C P值比那些健康的电池高。在进一步的试验中,半电池用石墨阳极的C P值从回收不健康电池被认为是比半电池与来自健康电池石墨的高。从不健康电池的一半细胞与LFP的表现类似于那些LFP从健康的电池。随着微观额外的分析,我们提出了LFP /石墨电池的恶化主要是由于较厚的SEI对石墨阳极的形成。在这项工作中开发的方法,能够以低计算成本被集成在电动汽车。更重要的是,我们在非平衡过程更好地了解了锂离子的界面动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号