...
首页> 外文期刊>Journal of Neurophysiology >Extracellular waveforms reveal an axonal origin of spikelets in pyramidal neurons
【24h】

Extracellular waveforms reveal an axonal origin of spikelets in pyramidal neurons

机译:细胞外波形揭示了金字塔内神经元尖峰的轴突起源

获取原文
获取原文并翻译 | 示例
           

摘要

Spikelets are small spike-like membrane depolarizations measured at the soma whose origin in pyramidal neurons is still unresolved. We investigated the mechanism of spikelet generation using detailed models of pyramidal neurons. We simulated extracellular waveforms associated with action potentials and spikelets and compared these with experimental data obtained by Chorev and Brecht (J Neurophysiol 108: 1584-1593, 2012) from hippocampal pyramidal neurons in vivo. We considered spikelets originating in the axon of a single cell as well as spikelets generated in two cells coupled with gap junctions. We found that in both cases the experimental data can be explained by an axonal origin of spikelets: in the single-cell case, action potentials are generated in the axon but fail to activate the soma. Such spikelets can be evoked by dendritic input. Alternatively. spikelets resulting from axoaxonal gap junction coupling with a large (greater than several hundred mu m) distance between the somata of the coupled cells are also consistent with the data. Our results demonstrate that a cell firing a somatic spikelet generates a detectable extracellular potential that is different from the action potential-correlated extracellular waveform generated by the same cell and recorded at the same location. This, together with the absence of a refractory period between action potentials and spikelets, implies that spikelets and action potentials generated in one cell may easily get misclassified in extracellular recordings as two different cells, albeit they both constitute the output of a single pyramidal neuron.
机译:尖峰是在躯体上测量的小穗状膜状膜去偏振,其原始锥形神经元仍未得到解决。我们研究了使用金字塔神经元的详细模型来调查了穗状花序生成的机制。我们模拟了与作用电位和尖峰相关的细胞外波形,并将这些与由Chorev和Brecht(J Neurophysiol 108:1584-1593,2012)获得的实验数据与体内的海马金字塔神经元相比。我们考虑了源自单个电池的轴突的尖峰以及在与间隙结合的两个细胞中产生的尖峰。我们发现,在这两种情况下,实验数据可以通过尖峰的轴突起源来解释:在单个单元外壳中,在轴突中产生动作电位,但不能激活SOMA。这种小尖峰可以被树突式输入引起。或者。由轴向间隙结耦合导致的轴轴间隙结耦合的尖峰与耦合电池的躯体之间的大(大于数百mu m)距离也与数据一致。我们的结果表明,烧制细胞射击体细胞尖头产生可检测的细胞外电位,其不同于由同一单元产生的动作电位相关的细胞外波形并记录在同一位置。这与不存在动作电位和尖峰之间的耐火周期一起意味着在一个细胞中产生的尖峰和动作电位可以容易地在细胞外记录中被错误分类为两个不同的细胞,尽管它们都构成了单个金字塔神经元的输出。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号