首页> 外文期刊>Journal of Nuclear Materials: Materials Aspects of Fission and Fusion >Defect evolution in Ni and solid-solution alloys of NiFe and NiFeCoCr under ion irradiation at 16 and 300 K
【24h】

Defect evolution in Ni and solid-solution alloys of NiFe and NiFeCoCr under ion irradiation at 16 and 300 K

机译:NI和Nifecocr在16和300K下离子辐射下Nife和Nifecocr的固体溶液合金的缺陷演变

获取原文
获取原文并翻译 | 示例
           

摘要

Single-phase concentrated solid-solution alloys (SP-CSAs) have shown unique chemical complexity at the levels of electrons and atoms, and their defect evolution is expected to be different from conventional dilute alloys. Single crystals of Ni, NiFe and NiFeCoCr are chosen as model systems to understand the chemical complexity on defect formation and damage accumulation in SP-CSAs under ion irradiation. The high-quality crystals were irradiated at 16 and 300 K to different ion fluences, to form irradiated region with little to heavy damages. The ion-induced damage was determined using Rutherford backscattering spectrometry technique along a channeling direction (RBS/C) and the level of lattice damage in irradiated Ni and SP-CSAs was quantified from Monte Carlo (MC) simulations. The results are interpreted using the Multi Step Damage Accumulation model to reveal material damage accumulation kinetics. Key findings of the study are that in case of room temperature irradiations the damage level measured for complex alloys at the highest irradiation fluence of 2 x 10(15) cm(-2) (similar to 3 dpa) is significantly higher than that obtained for pure nickel samples and suggest two-step damage accumulation process with a defect transformation taking place at a fluence of about 1.5 x 10(15) cm(-2). Moreover, structural and damage kinetic differences clearly imply that, with increasing degree of chemical complexity and high solidsolution strengthening effects from Ni to NiFe and to NiFeCoCr, the enhanced lattice stiffness resists to randomization of atomic configurations and inhibits the growth of extended defects. (C) 2020 Elsevier B.V. All rights reserved.
机译:单相浓缩固溶合金(SP-CSAs)在电子和原子的水平上显示出独特的化学复杂性,并且它们预计它们的缺陷进化与常规稀合金不同。选择Ni,NiFe和Nifecocr的单晶作为模型系统,以了解离子辐射下SP-CSA中缺陷形成和损伤积累的化学复杂性。高质量的晶体以16和300k照射到不同的离子流量,形成辐照区域,几乎没有重大损伤。使用Rutherford反向散射光谱法测定离子诱导的损伤,沿着沟道方向(RBS / C),并从蒙特卡罗(MC)模拟中量化辐照Ni和SP-CSA中的晶格损伤水平。使用多步损伤累积模型解释结果以显示材料损伤累积动力学。该研究的主要发现是,在室温照射的情况下,在最高照射的复合合金中测量的损伤水平为2×10(15)厘米(-2)(类似于3dPa)显着高于所获得的纯镍样品并提示两步伤害累积过程,其缺陷变换以1.5×10(15)厘米(-2)的流量。此外,结构和损伤的动力学差异明显暗示,随着从Ni到NiFe和Nifecocr的Nie and的化学复杂程度和高固化强化作用的增加,增强的晶格刚度抵抗原子配置的随机化,抑制延长缺陷的生长。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号