...
首页> 外文期刊>Journal of Nuclear Materials: Materials Aspects of Fission and Fusion >Stress corrosion crack growth rate of welded joint used for low-pressure rotor of nuclear turbine in oxygenated pure water at 180 degrees C
【24h】

Stress corrosion crack growth rate of welded joint used for low-pressure rotor of nuclear turbine in oxygenated pure water at 180 degrees C

机译:用于180摄氏度的氧化纯水中核电机低压转子的焊接接头的应力腐蚀裂纹生长速率

获取原文
获取原文并翻译 | 示例
           

摘要

Stress corrosion cracking (SCC) growth behavior of NiCrMoV steels welded joint of nuclear steam turbine was systematically investigated, which was conducted in pure water with 8 ppm oxygen at 180 degrees C. Crack growth rate (CGR) was used to evaluate the susceptibility of SCC for WM with fine bainites and HAZ with coarse prior austenite grains, simultaneously the cracking mechanisms for both zones were explored. WM has lower CGR than HAZ under the similar stress intensity factor, showing it had higher resistance to SCC. Oxygen promoted the nucleation and propagation for cracks. The oxygen diffusion zone (ODZ) formed in front of inner oxide layer through continually diffusion of oxygen in grain, and caused the embrittlement and transgranular cracking for WM. However, fine grains in WM could bear crack driving force and reduce stress concentration to increase the resistance for transgranular crack propagation. As for HAZ, the chromium-rich carbides along the prior austenite grain boundaries (PAGBs) accelerated the intergranular oxidation and facilitated the formation of intergranular oxide zone (IOZ). Thus, the crack could easily propagate in PAGE, and lead to higher CGR for the HAZ. (C) 2019 Elsevier B.V. All rights reserved.
机译:系统研究了Nicrmov钢的应力腐蚀裂解(SCC)生长行为核蒸汽涡轮机的焊接接头,其在纯水中在180℃下用8ppm氧进行,使用裂纹生长速率(CGR)来评估SCC的易感性对于具有细贝氏体和HAZ的WM,具有粗糙的先前奥氏体晶粒,同时探讨了两个区域的开裂机制。在类似的应力强度因子下,WM具有比HAX更低的CGR,表明它具有更高的SCC抗性。氧气促进了裂缝的成核和繁殖。在内氧化物层前面形成的氧气扩散区(ODZ)通过在晶粒中连续地扩散,并导致脆化和转晶裂解用于Wm。然而,WM中的细粒可以承受裂缝驱动力并降低应力集中以增加转晶裂纹繁殖的抗性。至于HAZ,沿前奥氏体晶界(PAGBS)的富含铬的碳化物加速了晶间氧化,促进了晶间氧化物区的形成(IOZ)。因此,裂缝可以在页面中容易地传播,并导致HAZ的更高CGR。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号