...
首页> 外文期刊>Journal of Physics, D. Applied Physics: A Europhysics Journal >Charge dissipation and self focusing limit in high current density ion beam transport through a micro glass capillary
【24h】

Charge dissipation and self focusing limit in high current density ion beam transport through a micro glass capillary

机译:通过微玻璃毛细管的高电流密度离子束输送中的电荷耗散和自聚焦限制

获取原文
获取原文并翻译 | 示例
           

摘要

Charge dissipation and self focusing limit in high current density ion beam transport through micro glass capillaries are investigated. It is demonstrated that ion beams can be guided efficiently (capillary exit diameters; straight capillary (SC): 860 mu m, tapered capillary (TC): 500 mu m, 300 mu m, 200 mu m, 110 mu m, 45 mu m and 20 mu m) with minimal loss of beam current, and thereby transport of ion beams (J similar to 600 Am-2) become possible, over a tilt angle of 5 degrees from the incident beam axis. The investigation reveals the existence of a lower limit on the capillary size, below which Coulomb repulsion of the beam's space charge dominates over the inward radial forces of the charges that get smeared on the capillary inner wall, and the beam can no longer self-focus, although the beam may be transported. Beam size compression at the capillary exit by as much as 81% could be achieved. A theoretical model validates the result and the self focusing factor tends to 1 for smaller capillary outlet. Charge dissipation is evaluated during a hysteresis cycle of beam current with ion energy, and it is found that maximum charge dissipation occurs for the 300 mu m capillary outlet (similar to 6 x 10(13) electronic charge). A nonlinear behaviour of the beam spot diameter with the capillary outlet is observed. Particle in cell (PIC) simulations are performed to interpret results.
机译:研究了通过微玻璃毛细管的高电流密度离子束传输中的电荷耗散和自聚焦极限。据证明,离子束可以有效地引导(毛细管出射线直径;直毛细管(SC):860 mu m,锥形毛细管(Tc):500 mu m,300 mu m,200 mu m,110 mu m,45 mu m和20μm)具有最小的梁电流损失,从而可以从入射光束轴线的倾斜角度为5度的倾斜角度,从而实现离子束(类似于600AM-2)的传输。调查揭示了毛细管大小的下限的存在,低于梁的空间电荷的库仑排斥在毛细管内壁上涂抹的电荷的向内径向压力上,并且该梁不能再自行焦点,尽管可以传送光束。可以实现毛细管出口处的光束尺寸压缩多达81%。理论模型验证结果,自聚焦因素倾向于为较小的毛细管出口。在具有离子能量的束电流的滞后循环期间评估电荷耗散,并且发现300μm毛细管出口发生最大电荷耗散(类似于6×10(13)电子电荷)。观察到光束直径与毛细管出口的非线性行为。小区中的粒子(PIC)模拟进行解释结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号