首页> 外文期刊>Journal of Sound and Vibration >Active vibration control of smart composite plates using optimized self-tuning fuzzy logic controller with optimization of placement, sizing and orientation of PFRC actuators
【24h】

Active vibration control of smart composite plates using optimized self-tuning fuzzy logic controller with optimization of placement, sizing and orientation of PFRC actuators

机译:优化自整调模糊逻辑控制器优化PCRC执行器尺寸和方向的优化自整调模糊逻辑控制器的主动振动控制

获取原文
获取原文并翻译 | 示例
           

摘要

This paper deals with optimization of the sizing, location and orientation of the piezo-fiber reinforced composite (PFRC) actuators and active vibration control of the smart composite plates using particle-swarm optimized self-tuning fuzzy logic controller. The optimization criteria for optimal sizing, location and orientation of the PFRC actuators is based on the Gramian controllability matrix and the optimization process is performed by involving the limitation of the plates masses increase. Optimal configurations of five PFRC actuators for active vibration control of the first six modes of cantilever symmetric ((90 degrees/0 degrees/90 degrees/0 degrees)s), antisymmetric cross-ply ((90 degrees/0 degrees/90 degrees/0 degrees/90 degrees/0 degrees/90 degrees/0 degrees)) and antisymmetric angle-ply ((45 degrees/-45 degrees/45 degrees/-45 degrees/45 degrees/-45 degrees/45 degrees/-45 degrees)) composite plates are found using the particle swarm optimization. The detailed analysis of influences of the PFRC layer orientation and position (top or bottom side of composite plates), as well as bending-extension coupling of antisymmetric laminates on controllabilities is also performed. The experimental study is performed in order to validate this behavior on controllabilities of antisymmetric laminates. The particle swarm-optimized self-tuning fuzzy logic controller (FLC) adapted for the multiple-input multiple-output (MIMO) control is implemented for active vibration suppression of the plates. The membership functions as well as output matrices are optimized using the particle swarm optimization. The Mamdani and the zero-order Takagi-Sugeno-Kang fuzzy inference methods are employed and their performances are examined and compared. In order to represent the efficiency of the proposed controller, results obtained using the proposed particle swarm optimized self-tuning FLC are compared with the corresponding results in the case of the linear quadratic regulator (LQR) optimal
机译:本文涉及使用粒子 - 群优化的自调定模糊逻辑控制器的压电增强复合复合材料(PCRC)执行器的尺寸,位置和方向的优化,以及智能复合板的主动振动控制。 PCRC致动器的最佳尺寸,位置和取向的优化标准基于克朗尼亚可控性矩阵,并且通过涉及板质量增加的限制来执行优化过程。五种PFRC致动器的最佳配置,用于悬臂对称前六种模式的主动振动控制((90度/ 0度/ 90度/ 0度)),反对称交叉层((90度/ 0度/ 90度/ 0度/ 90度/ 0度/ 90度/ 0度))和反对称角度((45度/ -45度/ 45度/ -45度/ 45度/ -45度/ 45度/ -45度) ))使用粒子群优化找到复合板。还执行了对PFRC层取向和位置(复合板顶部或底侧)的影响的详细分析,以及反对称层压性对控制的弯曲延伸耦合。进行实验研究,以验证这种对抗对手层压材料的控制的行为。适用于多输入多输出(MIMO)控制的粒子群优化的自调整模糊逻辑控制器(FLC)用于开关的主动振动抑制。使用粒子群优化优化成员函数以及输出矩阵。使用Mamdani和零阶Takagi-Sugeno-kang模糊推理方法,并检查它们的性能并进行比较。为了表示所提出的控制器的效率,将使用所提出的粒子群优化的自调整FLC获得的结果与线性二次调节器(LQR)的情况相应的结果进行了比较

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号