首页> 外文期刊>Acta biomaterialia >Molecular biomimetics: utilizing nature's molecular ways in practical engineering.
【24h】

Molecular biomimetics: utilizing nature's molecular ways in practical engineering.

机译:分子仿生:在实际工程中利用自然界的分子方法。

获取原文
获取原文并翻译 | 示例
           

摘要

In nature, proteins are the machinery that accomplish many functions through their specific recognition and interactions in biological systems from single-celled to multicellular organisms. Biomolecule-material interaction is accomplished via molecular specificity, leading to the formation of controlled structures and functions at all scales of dimensional hierarchy. Through evolution, molecular recognition and, consequently, functions developed through successive cycles of mutation and selection. Using biology as a guide, we can now understand, engineer and control peptide-material interactions and exploit these to tailor novel materials and systems for practical applications. We adapted combinatorial biology protocols to display peptide libraries, either on the cell surface or on phages, to select short peptides specific to a variety of practical materials systems. Following the selection step, we determined the kinetics and stability of peptide binding experimentally to understand the bound peptide structure via modeling and its assembly via atomic force microscopy. The peptides were further engineered to have multiple repeats or their amino acid sequences varied to tailor their function. Both nanoparticles and flat inorganic substrates containing multimaterials patterned at the nano- and microscales were used for self-directed immobilization of molecular constructs. The molecular biomimetic approach opens up new avenues for the design and utilization of multifunctional molecular systems with wide ranging applications, from tissue engineering, drug delivery and biosensors, to nanotechnology and bioremediation. Here we give examples of protein-mediated functional materials in biology, peptide selection and engineering with affinity to inorganics, demonstrate potential utilizations in materials science, engineering and medicine, and describe future prospects.
机译:在自然界中,蛋白质是通过在生物系统中从单细胞到多细胞生物的特异性识别和相互作用来完成许多功能的机制。生物分子与材料的相互作用是通过分子特异性来完成的,从而导致在各个维度层次上形成受控的结构和功能。通过进化,通过连续的突变和选择循环,分子识别以及功能得以发展。现在,以生物学为指导,我们可以了解,工程设计和控制肽与材料的相互作用,并利用它们来为实际应用定制新颖的材料和系统。我们调整了组合生物学方案,以在细胞表面或噬菌体上显示肽库,以选择针对各种实际材料系统的短肽。在选择步骤之后,我们通过实验确定了肽结合的动力学和稳定性,以通过建模及其原子力显微镜的组装来了解结合的肽结构。进一步对这些肽进行改造,使其具有多个重复序列或改变其氨基酸序列以适应其功能。包含在纳米和微米级图案化的多种材料的纳米颗粒和平坦的无机基质都用于分子构建体的自定向固定。分子仿生方法为多功能分子系统的设计和利用开辟了新途径,其用途广泛,从组织工程,药物输送和生物传感器到纳米技术和生物修复。在这里,我们举例说明蛋白质介导的功能性材料在生物学,肽选择和对无机物具有亲和力的工程中的应用,展示在材料科学,工程和医学中的潜在用途,并描述未来的前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号