首页> 外文期刊>Acta biomaterialia >Superior in vitro biological response and mechanical properties of an implantable nanostructured biomaterial: Nanohydroxyapatite-silicone rubber composite.
【24h】

Superior in vitro biological response and mechanical properties of an implantable nanostructured biomaterial: Nanohydroxyapatite-silicone rubber composite.

机译:可植入的纳米结构生物材料的优异的体外生物响应和机械性能:纳米羟基磷灰石-硅橡胶复合材料。

获取原文
获取原文并翻译 | 示例
           

摘要

A potential approach to achieving the objective of favorably modulating the biological response of implantable biopolymers combined with good mechanical properties is to consider compounding the biopolymer with a bioactive nanocrystalline ceramic biomimetic material with high surface area. The processing of silicone rubber (SR)-nanohydroxyapatite (nHA) composite involved uniform dispersion of nHA via shear mixing and ultrasonication, followed by compounding at sub-ambient temperature, and high-pressure solidification when the final curing reaction occurs. The high-pressure solidification approach enabled the elastomer to retain the high elongation of SR even in the presence of the reinforcement material, nHA. The biological response of the nanostructured composite in terms of initial cell attachment, cell viability and proliferation was consistently greater on SR-5wt.% nHA composite surface compared to pure SR. Furthermore, in the nanocomposite, cell spreading, morphology and density were distinctly different from that of pure SR. Pre-osteoblasts grown on SR-nHA were well spread, flat, large in size with a rough cell surface, and appeared as a group. In contrast, these features were less pronounced in SR (e.g. smooth cell surface, not well spread). Interestingly, an immunofluorescence study illustrated distinct fibronectin expression level, and stronger vinculin focal adhesion contacts associated with abundant actin stress fibers in pre-osteoblasts grown on the nanocomposite compared to SR, implying enhanced cell-substrate interaction. This finding was consistent with the total protein content and SDS-PAGE analysis. The study leads us to believe that further increase in nHA content in the SR matrix beyond 5wt.% will encourage even greater cellular response. The integration of cellular and molecular biology with materials science and engineering described herein provides a direction for the development of a new generation of nanostructured materials.
机译:实现良好地调节可植入生物聚合物的生物学响应并具有良好机械性能的目标的潜在方法是考虑将生物聚合物与具有高表面积的生物活性纳米晶体陶瓷仿生材料复合。硅橡胶(SR)-纳米羟基磷灰石(nHA)复合材料的加工涉及通过剪切混合和超声处理使nHA均匀分散,然后在低于室温的温度下进行配混,并在最终固化反应发生时进行高压固化。高压固化方法使弹性体即使在增强材料nHA的存在下仍能保持SR的高伸长率。与纯SR相比,在SR-5wt。%nHA复合材料表面上,纳米结构复合材料在初始细胞附着,细胞活力和增殖方面的生物学反应始终较高。此外,在纳米复合材料中,细胞扩散,形态和密度与纯SR明显不同。在SR-nHA上生长的成骨前细胞分布良好,呈扁平状,大小较大,细胞表面粗糙,并成群出现。相反,这些特征在SR中不太明显(例如,光滑的细胞表面,没有很好地铺展)。有趣的是,一项免疫荧光研究表明,与SR相比,在纳米复合材料上生长的成骨细胞中,纤连蛋白的表达水平不同,与丰富的肌动蛋白应力纤维相关的更强的纽蛋白粘着接触与SR相比,意味着细胞-底物的相互作用增强。该发现与总蛋白质含量和SDS-PAGE分析一致。该研究使我们相信,SR基质中nHA含量的进一步增加超过5wt。%将会鼓励更大的细胞反应。本文所述的细胞和分子生物学与材料科学和工程学的整合为新一代纳米结构材料的开发提供了方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号