首页> 外文期刊>Acta biomaterialia >Intermediate filament-deficient cells are mechanically softer at large deformation: a multi-scale simulation study.
【24h】

Intermediate filament-deficient cells are mechanically softer at large deformation: a multi-scale simulation study.

机译:中间丝缺陷的电池在大变形时机械上较软:一项多尺度模拟研究。

获取原文
获取原文并翻译 | 示例
           

摘要

The cell's cytoskeleton, providing cells with structure and shape, consists of different structural proteins, including microtubules, actin microfilaments and intermediate filaments. It has been suggested that intermediate filaments play a crucial role in providing mechanical stability to cells. By utilizing a simple coarse-grained computational model of the intermediate filament network in eukaryotic cells, we show here that intermediate filaments play a significant role in the cell mechanical behavior at large deformation, and reveal mechanistic insight into cell deformation under varying intermediate filament densities. We find that intermediate filament-deficient cells display an altered mechanical behavior, featuring a softer mechanical response at large deformation while the mechanical properties remain largely unchanged under small deformation. We compare the results with experimental studies in vimentin-deficient cells, showing good qualitative agreement. Our results suggest that intermediate filaments contribute to cell stiffness and deformation at large deformation, and thus play a significant role in maintaining cell structural integrity in response to applied stress and strain, in agreement with earlier hypotheses. The simulation results also suggest that changes in the filament density result in profound alterations of the deformation state of the cell nucleus, leading to greater stretch in the direction of loading and greater contraction in the orthogonal direction as the intermediate filament density is increased. Our model opens the door to future studies to investigate disease states, the effects of amino acid mutations and how structural changes at different levels in the cell's structural makeup influence biomechanical properties.
机译:细胞的细胞骨架为细胞提供结构和形状,由不同的结构蛋白组成,包括微管,肌动蛋白微丝和中间丝。已经提出,中间丝在提供细胞机械稳定性方面起着至关重要的作用。通过利用真核细胞中中间细丝网络的简单粗粒度计算模型,我们在这里显示出中间细丝在大变形时在细胞力学行为中起着重要作用,并揭示了在变化的中间细丝密度下对细胞变形的机械观察。我们发现中间的细丝缺陷细胞显示出改变的机械行为,在大变形时具有较柔和的机械响应,而在小变形下其机械性能基本上保持不变。我们将结果与波形蛋白缺陷细胞中的实验研究进行比较,显示出良好的定性一致性。我们的结果表明,中间丝在较大的变形中有助于细胞的刚度和变形,因此在响应于施加的应力和应变而维持细胞结构完整性方面起着重要作用,这与早期的假设相符。模拟结果还表明,细丝密度的变化会导致细胞核变形状态的深刻变化,从而随着中间细丝密度的增加,在加载方向上的拉伸更大,在正交方向上的收缩更大。我们的模型为进一步研究疾病状态,氨基酸突变的影响以及细胞结构组成中不同水平的结构变化如何影响生物力学特性打开了大门。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号