首页> 外文期刊>Acta biomaterialia >Calcium phosphate deposition rate, structure and osteoconductivity on electrospun poly(l-lactic acid) matrix using electrodeposition or simulated body fluid incubation
【24h】

Calcium phosphate deposition rate, structure and osteoconductivity on electrospun poly(l-lactic acid) matrix using electrodeposition or simulated body fluid incubation

机译:电沉积或模拟体液温育在电纺聚(l-乳酸)基质上磷酸钙的沉积速率,结构和骨电导率

获取原文
获取原文并翻译 | 示例
           

摘要

Mineralized nanofibrous scaffolds have been proposed as promising scaffolds for bone regeneration due to their ability to mimic both nanoscale architecture and chemical composition of natural bone extracellular matrix. In this study, a novel electrodeposition method was compared with an extensively explored simulated body fluid (SBF) incubation method in terms of the deposition rate, chemical composition and morphology of calcium phosphate formed on electrospun fibrous thin matrices with a fiber diameter in the range ~200-1400 nm prepared using 6, 8, 10 and 12 wt.% poly(l-lactic acid) (PLLA) solutions in a mixture of dichloromethane and acetone (2:1 in volume). The effects of the surface modification using the two mineralization techniques on osteoblastic cell (MC3T3-E1) proliferation and differentiation were also examined. It was found that electrodeposition was two to three orders of magnitude faster than the SBF method in mineralizing the fibrous matrices, reducing the mineralization time from ~2 weeks to 1 h to achieve the same amounts of mineralization. The mineralization rate also varied with the fiber diameter but in opposite directions between the two mineralization methods. As a general trend, the increase of fiber diameter resulted in a faster mineralization rate for the electrodeposition method but a slower mineralization rate for the SBF incubation method. Using the electrodeposition method, one can control the chemical composition and morphology of the calcium phosphate by varying the electric deposition potential and electrolyte temperature to tune the mixture of dicalcium phosphate dihydrate and hydroxyapatite (HAp). Using the SBF method, one can only obtain a low crystallinity HAp. The mineralized electrospun PLLA fibrous matrices from either method similarly facilitate the proliferation and osteogenic differentiation of preosteoblastic MC3T3-E1 cells as compared to neat PLLA matrices. Therefore, the electrodeposition method can be utilized as a fast and versatile technique to fabricate mineralized nanofibrous scaffolds for bone tissue engineering.
机译:矿化的纳米纤维支架已经被提出作为有希望的骨再生支架,因为它们具有模仿纳米级结构和天然骨细胞外基质化学组成的能力。本研究从纤维直径在〜范围内的电纺纤维薄基质上形成的磷酸钙的沉积速率,化学组成和形貌方面,将一种新颖的电沉积方法与广泛研究的模拟体液(SBF)培养方法进行了比较。使用在二氯甲烷和丙酮(体积为2:1)的混合物中的6、8、10和12 wt。%的聚(l-乳酸)(PLLA)溶液制备200-1400 nm。还检查了使用两种矿化技术进行的表面改性对成骨细胞(MC3T3-E1)增殖和分化的影响。发现在使纤维基质矿化方面,电沉积比SBF法快2到3个数量级,从而使矿化时间从约2周减少到1 h,以实现相同量的矿化。矿化速率也随纤维直径而变化,但在两种矿化方法之间却相反。作为一般趋势,纤维直径的增加导致电沉积方法的矿化速率更快,而SBF孵育方法的矿化速率更低。使用电沉积方法,可以通过改变电沉积电势和电解液温度来控制磷酸钙的化学组成和形态,从而调节磷酸二钙二水合物和羟基磷灰石(HAp)的混合物。使用SBF方法,只能获得低结晶度的HAp。与纯PLLA基质相比,两种方法中矿化的电纺PLLA纤维基质都相似地促进了成骨前MC3T3-E1细胞的增殖和成骨分化。因此,电沉积方法可以用作制造骨组织工程化的矿化的纳米纤维支架的快速且通用的技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号