首页> 外文期刊>Acta biomaterialia >Controlling poly(beta-amino ester) network properties through macromer branching.
【24h】

Controlling poly(beta-amino ester) network properties through macromer branching.

机译:通过大分子单体分支控制聚(β-氨基酯)网络性质。

获取原文
获取原文并翻译 | 示例
           

摘要

Photopolymerizable and degradable biomaterials are becoming important in the development of advanced materials in the fields of tissue engineering, drug delivery, and microdevices. We have recently developed a library of poly(beta-amino ester)s (PBAEs) that form networks with a wide range of mechanical properties and degradation rates that are controlled by simple alterations in the macromer molecular weight or chemical structure. In this study, the influence of macromer branching on network properties was assessed by adding the trifunctional monomer pentaerythritol triacrylate (PETA) during synthesis. This led to a dose-dependent increase in the network compressive modulus, tensile modulus, and glass transition temperature, and a decrease in the network soluble fraction, yet led to only minor variations in degradation profiles and reaction behavior. For instance, the tensile modulus increased from 1.98+/-0.09MPa to 3.88+/-0.20MPa when the macromer went from a linear structure to a more branched structure with the addition of PETA. When osteoblast-like cells were grown on thin films, there was an increase in cell adhesion and spreading as the amount of PETA incorporated during synthesis increased. Towards tissue engineering applications, porous scaffolds were fabricated by photopolymerizing around a poragen and then subsequently leaching the poragen. Interconnected pores were observed in the scaffolds and observed trends translated to the porous scaffold (i.e., increasing mechanics with increasing branching). These findings demonstrate a simple variation during macromer synthesis that can be used to further tune the physical properties of scaffolds for given applications, particularly for candidates from the PBAE library.
机译:可光聚合和可降解的生物材料在组织工程,药物输送和微设备领域中的高级材料开发中变得越来越重要。我们最近开发了一个聚(β-氨基酯)(PBAEs)库,该库形成具有广泛的机械性能和降解速率的网络,这些机械性能和降解速率由大分子单体分子量或化学结构的简单改变来控制。在这项研究中,通过在合成过程中添加三官能单体季戊四醇三丙烯酸酯(PETA)来评估大分子单体分支对网络性能的影响。这导致网络压缩模量,拉伸模量和玻璃化转变温度的剂量依赖性增加,以及网络可溶分数的降低,但导致降解曲线和反应行为仅发生微小变化。例如,当加入PETA使大分子单体从线性结构变为更支化的结构时,拉伸模量从1.98 +/- 0.09MPa增加到3.88 +/- 0.20MPa。当成骨细胞样细胞在薄膜上生长时,随着合成过程中掺入的PETA量的增加,细胞的粘附和扩散也增加。在组织工程应用中,多孔支架是通过在光气原周围进行光聚合,然后浸出光气来制造的。在支架中观察到相互连接的孔,并且观察到的趋势转化为多孔支架(即,随着分支的增加,力学增加)。这些发现证明了大分子单体合成过程中的简单变化,可用于为给定的应用,特别是对于PBAE库中的候选物,进一步调节支架的物理性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号