首页> 外文期刊>Acta biomaterialia >Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture
【24h】

Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture

机译:可见光固化硫醇-乙烯基水凝胶,具有可降解的3D细胞培养物

获取原文
获取原文并翻译 | 示例
           

摘要

We report here a synthetically simple yet highly tunable and diverse visible light mediated thiol-vinyl gelation system for fabricating cell-instructive hydrogels. Gelation was achieved via a mixed-mode step-and-chain-growth photopolymerization using functionalized 4-arm poly(ethylene glycol) as backbone macromer, eosin-Y as photosensitizer, and di-thiol containing molecule as dual purpose co-initiator/cross-linker. N-vinylpyrrolidone (NVP) was used to accelerate gelation kinetics and to adjust the stiffness of the hydrogels. Visible light (wavelength: 400-700 nm) was used to initiate rapid gelation (gel points: ~20 s) that reached completion within a few minutes. The major differences between current thiol-vinyl gelation and prior visible light mediated photopolymerization are that: (1) the co-initiator triethanolamine (TEA) used in the previous systems was replaced with multifunctional thiols and (2) mixed-mode polymerized gels contain less network heterogeneity. The gelation kinetics and gel properties at the same PEG macromer concentration could be tuned by changing the identity of vinyl groups and di-thiol cross-linkers, as well as concentration of cross-linker and NVP. Specifically, acrylate-modified PEG afforded the fastest gelation rate, followed by acrylamide and methacrylate-functionalized PEG. Increasing NVP concentration also accelerated gelation and led to a higher network cross-linking density. Further, increasing di-thiol peptide concentration in the gel formulation increased hydrogel swelling and decreased gel stiffness. Due to the formation of thiol-ether-ester bonds following thiol-acrylate reaction, the gels degraded hydrolytically following a pseudo first order degradation kinetics. Degradation rate was controlled by adjusting thiol or NVP content in the polymer precursor solution. The cytocompatibility and utility of this hydrogel system were evaluated using in situ encapsulation of human mesenchymal stem cells (hMSC). Encapsulated hMSCs remained alive (>90%) throughout the duration of the study and the cells were differentiated down osteogenic lineage with varying degrees by controlling the rate and mode of gel degradation.
机译:我们在这里报告了一个合成简单但高度可调和多样的可见光介导的巯基-乙烯基凝胶化体系,用于制造细胞指导性水凝胶。凝胶化是通过使用功能化的4臂聚乙二醇作为骨架大分子单体,曙红Y作为光敏剂,含二硫醇的分子作为双重目的共引发剂/交联剂的混合模式步长和链增长光聚合来实现的-链接器。 N-乙烯基吡咯烷酮(NVP)用于加速凝胶动力学和调节水凝胶的硬度。用可见光(波长:400-700 nm)引发快速胶凝(凝胶点:〜20 s),该胶凝在几分钟内完成。当前的硫醇-乙烯基凝胶化和先前的可见光介导的光聚合之间的主要区别在于:(1)先前系统中使用的助引发剂三乙醇胺(TEA)被多官能硫醇取代,(2)混合模式聚合的凝胶含量较少网络异质性。可以通过改变乙烯基和二硫醇交联剂的身份以及交联剂和NVP的浓度来调整相同PEG大分子单体浓度下的凝胶动力学和凝胶性质。具体而言,丙烯酸酯改性的PEG提供最快的胶凝速度,其次是丙烯酰胺和甲基丙烯酸酯官能化的PEG。 NVP浓度的增加也加速了凝胶化并导致更高的网络交联密度。此外,凝胶制剂中二硫醇肽浓度的增加增加了水凝胶溶胀并降低了凝胶刚度。由于在硫醇-丙烯酸酯反应后形成了硫醇-醚-酯键,凝胶按照拟一级降解动力学水解降解。通过调节聚合物前体溶液中的硫醇或NVP含量来控制降解速率。该水凝胶系统的细胞相容性和实用性使用人间充质干细胞(hMSC)的原位封装进行评估。封装的hMSC在整个研究过程中都保持存活(> 90%),并且通过控制凝胶降解的速率和模式将细胞分化为不同程度的成骨细胞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号