首页> 外文期刊>RSC Advances >Optimizing the biosorption of Bi3+ ions by Streptomyces rimosus using experimental design and applicability in kinetics and isotherm modeling
【24h】

Optimizing the biosorption of Bi3+ ions by Streptomyces rimosus using experimental design and applicability in kinetics and isotherm modeling

机译:使用实验设计和适用性在动力学和等温模拟中,优化Streptomyces Rimosus的Bi3 +离子的生物吸附

获取原文
获取原文并翻译 | 示例
           

摘要

This investigation seeks to analyze bismuth biosorption onto Streptomyces rimosus in solutions following optimization using a Box-Behnken Design (BBD). Based on an efficient method, three significant parameters including pH, temperature, and initial bismuth (Bi3+) concentration in a batch system were studied using design of experiment (DOE). A central composite second order response surface methodology (RSM) accomplishes the construction of model biosorption (R%) and operating conditions. Using this statistical-mathematical method leads to obtaining a second-order equation for bismuth removal. The regression equation was obtained using Design Expert 7.0 software. The numerical optimization shows a great biosorption percentage (>97%) at pH 8.0, 30 degrees C, and 30 mg L-1 for bismuth. The quadratic models exhibited higher R-2 values, significant p-values, and insignificant lack-of-fit p-values that all confirm their high suitability for predicting the response. Both mathematical and empirical models, due to their high correlation coefficient (R-2) of 0.9999, are suitable for predicting the biosorption trend of bismuth in solution. The closeness of the predicted values and experimental values also supports this conclusion. The pseudo-second order kinetic model adequately described the kinetic data. The Langmuir isotherm model described the process of Bi3+ uptake better than the other models. The maximum biosorption capacity of the biosorbent was found to be 38.93 mg g(-1) for bismuth biosorption. The possible interactions between biosorbents and bismuth were also evaluated using Fourier transform infrared (FT-IR) spectroscopy analysis.
机译:本次调查旨在铋吸附分析到龟裂链霉菌中使用盒子Behnken法设计(BBD)以下的优化解决方案。根据一个有效的方法,在间歇系统3个显著参数,包括pH值,温度,和初始铋(BI 3 +)浓度使用实验(DOE)的设计进行了研究。中央复合二次响应面分析法(RSM)完成模型吸附(R%)和操作条件的结构。使用这种统计的数学方法导致获得铋去除二阶方程。用设计专家7.0软件得到回归方程。的数值优化显示在pH8.0很大吸附百分比(> 97%),30℃,和30毫克L-1为铋。的二次模型表现出更高的R-2的值,显著p值,并且不显着失拟-p值的所有确认它们的高适应性的预测的响应。两者的数学和经验模型,由于其0.9999高相关系数(R-2)是合适的用于预测铋在溶液中的吸附的趋势。该预测值与实验值的接近也支持这一结论。伪二级动力学模型充分描述的动力学数据。朗格缪尔等温线模型描述BI3的过程+摄取比其他模型更好。该生物吸附剂的最大吸附容量结果为38.93毫克克(-1)铋吸附作用。生物吸附剂和铋之间的可能的相互作用,使用傅里叶变换红外(FT-IR)光谱法分析了评价。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号