首页> 外文期刊>RSC Advances >Enhanced visible light and photocatalytic performance of TiO2 nanotubes by hydrogenation at lower temperature
【24h】

Enhanced visible light and photocatalytic performance of TiO2 nanotubes by hydrogenation at lower temperature

机译:通过在较低温度下氢化增强了TiO2纳米管的可见光和光催化性能

获取原文
获取原文并翻译 | 示例
           

摘要

Protonated titanate nanotubes were chosen as a precursor in a hydrogenation process. Owing to the high capacity for molecular hydrogen storage of nanotubes, TiO2 nanotubes can be hydrogenated through thermal treatment under N-2 and H-2 mixed flow at lower temperature. A series of hydrogenated TiO2 nanotubes and nanobelts were synthesized and characterized by XRD, UV-vis, TEM, EPR and XPS. The results showed that the hydrogenated TiO2 nanotubes possess tiny and uniform diameters of 8-10 nm and walls thicknesses of 2-3 nm, and were mainly anatase. The anatase TiO2 nanotubes transformed to TiO2-B nanobelts when the hydrothermal temperature was higher than 150 degrees C. The light absorption of hydrogenated TiO2 nanotubes was expanded to visible light. However, air-TiO2 and hydrogenated TiO2 nanobelts only absorbed ultraviolet light. According to XPS and EPR analysis, hydrogenated TiO2 nanotubes displayed stable core-shell structures, in which the surface was mainly stoichiometric TiO2 and the core was non-stoichiometric TiO2 with Ti3+ and oxygen vacancies. The adsorption and photocatalytic performance were evaluated by the removal rate of phenol. Based on a pseudo-first order kinetic model, the degradation rate constant was obtained with the regression analysis. The highest degradation rate constant of hydrogenated TiO2 nanotubes was 5.2 times higher than air-TiO2. In comparison, the degradation rate constants of hydrogenated TiO2 nanobelts were much lower than air-TiO2. The results showed that the precursor with nanotube structure can be hydrogenated easily at lower temperature compared with nanobelts, resulting in the photocatalytic activity of hydrogenated TiO2 nanotubes being enhanced drastically.
机译:选择质子化钛酸酯纳米管作为氢化过程中的前体。由于纳米管的分子储存量高,TiO2纳米管可以通过在N-2和H-2混合流动下在较低温度下通过热处理氢化。通过XRD,UV-Vis,TEM,EPR和XPS合成了一系列氢化的TiO2纳米管和纳米核。结果表明,氢化的TiO2纳米管具有8-10nm的微小且均匀的直径,壁厚为2-3nm,主要是锐钛矿。当水热量温度高于150℃时,将锐钛矿TiO2纳米管转化为TiO2-B纳米杆。氢化TiO2纳米管的光吸收膨胀至可见光。然而,Air-TiO 2和氢化的TiO2纳米仅吸收紫外线。根据XPS和EPR分析,氢化的TiO2纳米管显示稳定的核壳结构,其中表面主要是化学计量TiO 2,核心是具有Ti3 +和氧空位的非化学计量TiO 2。通过去除苯酚的去除率来评估吸附和光催化性能。基于伪第一阶动力学模型,通过回归分析获得降解速率常数。氢化TiO2纳米管的最高降解速率常数比空气-TiO2高5.2倍。相比之下,氢化TiO2纳米核的降解速率常数远低于空气-TiO2。结果表明,与纳米核相比,纳米管结构的前体可以在较低温度下容易地氢化,导致氢化TiO2纳米管的光催化活性急剧增强。

著录项

  • 来源
    《RSC Advances》 |2016年第8期|共8页
  • 作者单位

    Gansu Acad Sci Nat Energy Inst Lanzhou 730046 Peoples R China;

    Gansu Acad Sci Nat Energy Inst Lanzhou 730046 Peoples R China;

    Northwest Yongxin Coatings Co Ltd Lanzhou 730046 Peoples R China;

    Gansu Acad Sci Nat Energy Inst Lanzhou 730046 Peoples R China;

    Lanzhou Univ State Key Lab Appl Organ Chem Key Lab Catalyt Engn Gansu Prov &

    Chem Engn Lanzhou 730000 Peoples R China;

    Gansu Acad Sci Nat Energy Inst Lanzhou 730046 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号