首页> 外文期刊>RSC Advances >Synthesis of rare-earth doped ZnO nanorods and their defect-dopant correlated enhanced visible-orange luminescence
【24h】

Synthesis of rare-earth doped ZnO nanorods and their defect-dopant correlated enhanced visible-orange luminescence

机译:稀土掺杂ZnO纳米棒的合成及其缺陷掺杂剂相关增强的可见橙色发光

获取原文
获取原文并翻译 | 示例
           

摘要

We report the synthesis of size controlled ZnO and rare-earth doped ZnO nanorods in the sub-10 nm diameter regime. The preferential anisotropic growth of the nanostructures along the polar c-axis leads to the formation of wurtzite phase ZnO nanorods. Photoluminescence measurements reveal enhancement of visible luminescence intensity with increasing RE3+ concentrations upon excitation of host ZnO into the band gap. The broad visible luminescence originates from multiple intrinsic or extrinsic defects. The luminescence from RE3+ is enabled by energy transfer from defect centers of the host nanocrystal lattice to dopant sites. Host-guest energy transfer facilitates efficient intra-4f orbital transitions (D-5(4) -> F-7(j) for Tb3+ and D-5(0) -> F-7(j) for Eu3+) related characteristic green or red emission. Interestingly, different decay rates of host defects and RE3+ emission transition also allow temporal control to achieve either pure green or red color. This study suggests that manipulation of defects through bottom-up techniques is a viable method to modulate the energy transfer dynamics, which may help enable the future applications of ZnO-based phosphor materials in optoelectronic and multicolor emission displays.
机译:我们在亚10 nm直径方案中报道了尺寸控制ZnO和稀土掺杂ZnO纳米棒的合成。沿着极性C轴的纳米结构的优先各向异性生长导致紫立岩相ZnO纳米棒的形成。光致发光测量揭示了可见光发光强度的增强随着Re3 +浓度在激发宿主ZnO进入带隙时的增强。宽阔的可见发光起源于多种内在缺陷或外在缺陷。从RE3 +的发光通过从宿主纳米晶晶格的缺陷中心到掺杂剂部位的能量转移来实现。宿主 - 客人能源转移有助于高效的4F轨道转换(D-5(4) - > F-7(J)用于EU3 +的TB3 +和D-5(0) - > F-7(J)相关特征绿色或红色排放。有趣的是,不同的宿主缺陷和RE3 +排放转换的不同衰减率也允许时间控制来实现纯绿色或红色。该研究表明,通过自下而上的技术操纵缺陷是一种可行的方法来调制能量传递动态,这可以有助于使基于ZnO的荧光材料在光电和多色发射显示器中的未来应用。

著录项

  • 来源
    《RSC Advances》 |2016年第42期|共9页
  • 作者单位

    Indian Inst Technol Dept Chem Bombay 400076 Maharashtra India;

    Indian Inst Technol Dept Chem Bombay 400076 Maharashtra India;

    Indian Inst Technol Dept Chem Bombay 400076 Maharashtra India;

    Indian Inst Technol Dept Chem Bombay 400076 Maharashtra India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号