首页> 外文期刊>RSC Advances >n-Type phosphorus-doped nanocrystalline diamond: electrochemical and in situ Raman spectroelectrochemical study
【24h】

n-Type phosphorus-doped nanocrystalline diamond: electrochemical and in situ Raman spectroelectrochemical study

机译:n型磷掺杂纳米晶金刚石:电化学和原位拉曼光谱电化学研究

获取原文
获取原文并翻译 | 示例
           

摘要

Electrochemical and in situ Raman spectroelectrochemical characterization of n-type phosphorus-doped nanocrystalline diamond (P-NCD) is carried out. The P-NCD films are grown by microwave plasma enhanced chemical vapour deposition and doped with phosphorus at a concentration of 10 000 ppm in the gas phase. Micro-Raman spectroscopy determines the film quality (presence of graphitic or amorphous phases). All electrochemical measurements are performed in aqueous 0.5 M H2SO4 electrolyte solution. Electrochemical impedance spectroscopy (EIS) confirms the n-type conduction of a P-NCD electrode and from the Mott-Schottky plot the donor concentration (N-D) of 1.8 x 10(18) cm(-3) is determined. The in situ Raman spectroelectrochemistry is performed in the potential range from -1.5 to 1.5 V vs. Ag/AgCl using two laser excitations (633 nm and 488 nm). In the case of the as-prepared PNCD film, the Raman modes belonging to non-diamond (sp(2)) impurities change their intensities during applied potentials. The intensity of such Raman peaks increases at cathodic potentials, while at anodic potentials they disappear. On the other hand, the intensity and position of the sp(3) diamond peak (1334 cm(-1)) exhibit no spectroelectrochemical changes and the same holds for the photoluminescence peak (at 1.68 eV) assigned to Si-impurities. After several cyclic voltammetry (CV) scans, the electrochemical potential window of a P-NCD electrode increases. This is due to the "electrochemical burning" of impurities at large anodic potentials, which is also confirmed by in situ Raman spectroelectrochemistry. Angle-resolved XPS confirms partial electrochemical oxidation of P-NCD in thin surface layers.
机译:进行了N型磷掺杂纳米晶金刚石(P-NCD)的电化学和原位拉曼光谱电化学表征。通过微波等离子体增强的化学气相沉积和在气相中以10000ppm的浓度掺杂,掺杂P-NCD膜。微拉曼光谱法确定胶片质量(石墨或无定形阶段的存在)。所有电化学测量均在0.5M H 2 SO 4电解质溶液中进行。电化学阻抗光谱(EIS)证实了P-NCD电极的N型传导,并从MOTT-Schottky曲线绘制了1.8×10(18 )cm(-3)的供体浓度(N-D)。使用两个激光激发(633nm和488nm)在-1.5至1.5V与Ag / AgCl的电位范围内进行原位拉曼光谱电化学。在作为制备的PNCD膜的情况下,属于非金刚石的拉曼模式(SP(2))杂质在施加电位期间改变它们的强度。这种拉曼峰的强度在阴极电位下增加,而在它们消失的阳极电位上。另一方面,SP(3)金刚石峰的强度和位置(1334cm(-1))表现出光谱电化学变化,并且对于分配给Si-杂质的光致发光峰(1.68eV)相同的保持。在几个循环伏安法(CV)扫描之后,P-NCD电极的电化学潜在窗口增加。这是由于大阳极电位的杂质的“电化学燃烧”,也通过原位拉曼光谱电化学证实。角度分辨XPS在薄的表面层中确认p-ncd的部分电化学氧化。

著录项

  • 来源
    《RSC Advances》 |2016年第56期|共7页
  • 作者单位

    AS CR J Heyrovsky Inst Phys Chem Dept Electrochem Mat Vvi Dolejskova 3 Prague 18223 8 Czech Republic;

    AS CR J Heyrovsky Inst Phys Chem Dept Electrochem Mat Vvi Dolejskova 3 Prague 18223 8 Czech Republic;

    Hasselt Univ Inst Mat Res IMO Wetenschapspk 1 B-3590 Diepenbeek Belgium;

    Hasselt Univ Inst Mat Res IMO Wetenschapspk 1 B-3590 Diepenbeek Belgium;

    AS CR Inst Phys Vvi Slovance 2 Prague 18221 8 Czech Republic;

    AS CR J Heyrovsky Inst Phys Chem Dept Electrochem Mat Vvi Dolejskova 3 Prague 18223 8 Czech Republic;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号