首页> 外文期刊>RSC Advances >Studies on the drastic improvement of photocatalytic degradation of acid orange-74 dye by TPPO capped CuO nanoparticles in tandem with suitable electron capturing agents
【24h】

Studies on the drastic improvement of photocatalytic degradation of acid orange-74 dye by TPPO capped CuO nanoparticles in tandem with suitable electron capturing agents

机译:TPPO覆盖CuO纳米粒子串联酸橙-74染料光催化降解的抗震性改善研究与合适的电子捕获剂

获取原文
获取原文并翻译 | 示例
           

摘要

Highly stable copper oxide (CuO) nanoparticles are synthesized by a precipitation method and stabilized by in situ capping with triphenylphosphine oxide (TPPO). The as-synthesized CuO nanoparticles were characterized for average particle size (8 nm) by transmission electron micrography (TEM); an optical band gap of 2.29 eV by diffused reflectance spectroscopy and a large BET surface area (105.82 m(2) g(-1)). The sunlight induced photocatalytic activity towards the degradation of acid orange 74 (an azo dye) by TPPO capped CuO nanoparticles was attributed to unfavorable electron capturing by molecular oxygen to produce reactive oxygen species. This is demonstrated from theoretical band structure calculations which revealed valence band edge (2.59 eV) and conduction band edge (0.29 eV) for TPPO capped CuO nanoparticles, which are unfavourable for electron transfer with respect to the redox potentials of O-2/O-2(center dot-) (-0.2 eV) and H2O/(OH)-O-center dot (2.2 eV) in the NHE scale. Strikingly, TPPO capped CuO nanoparticles when mixed with 5 mM K2S2O8 exhibited 99% degradation of acid orange-74 in 180 min under sunlight exposure. A similar dye degradation efficiency was observed when CuO nanoparticles were mixed with H2O2 in the reaction medium. The mechanism for the drastic improvement in the dye degradation due to the addition of K2S2O8 or H2O2 has been explained on the basis of favorable redox couples of S2O82-/SO4 center dot- (2.01 eV) and H2O2/(OH)-O-center dot (0.87 eV) which could accept photoexcited electrons from the conduction band of CuO to produce reactive hydroxyl radical species. Using selective scavenger for reactive oxygen species, the generation of O-2(center dot-) was ruled out and hydroxyl radicals were confirmed as the major reactive oxygen species for the degradation of acid orange-74 dye. Ion chromatography studies of the aliquot left after sunlight induced photocatalytic dye degradation revealed anions, viz. nitrate, sulphate, oxalate and formate, which are released due to mineralization of the dye solution by a photocatalytic process. The performance of the photocatalytic dye degradation was unchanged for 5 repetitive catalytic cycles and hence it was concluded that TPPO capped CuO nanoparticles offer excellent photocatalytic dye degradation ability when suitable electron capturing agents like potassium persulphate are used in tandem.
机译:通过沉淀方法合成高度稳定的氧化铜(CuO)纳米颗粒,并通过用三苯基膦(TPPO)原位封端稳定。通过透射电子显微图(TEM)表征了作为平均粒度(8nm)的作为合成的CuO纳米颗粒;通过扩散反射光谱和大的BET表面积(105.82m(2)G(-1)),光带隙为2.29eV。通过TPPO覆盖CuO纳米颗粒致酸橙74(AZO染料)降解的光催化活性归因于分子氧的不利电子捕获,以产生反应性氧。这是从理论带结构计算中展示的,其揭示了用于TPPO覆盖CuO纳米颗粒的价带边缘(2.59eV)和导带边缘(0.29eV)的导电带边缘(0.29eV),这对于电子传递相对于O-2 / O-的氧化还原电位是不利的。 2(中心点)(-0.2eV)和H2O /(OH)-O中心点(2.2eV)在NHE刻度。尖锐的是,在与5mm K 2 SO 2混合时,TPPO覆盖CuO纳米颗粒在阳光暴露下在180分钟内表现出99%的酸橙-74降解。当CuO纳米颗粒与反应介质中的H 2 O 2混合时,观察到类似的染料降解效率。已经在S2O82- / SO4中心点 - (2.01eV)和H2O2 /(OH)-O中心的良好氧化还原伴侣的基础上解释了由于添加K2S2O8或H 2 O 2引起的染料降解的染料降解的机制。点(0.87eV),可以接受来自CuO的导电带的光屏蔽电子以产生反应性羟基自由基物质。利用选择性清除剂进行反应性氧物质,排除了O-2(中心点)的产生,并确认羟基自由基作为酸橙-74染料的降解的主要反应性氧物质。阳光诱导光催化染料降解揭示阴离子,viz后,离子色谱研究留下的等分试样。硝酸盐,硫酸盐,草酸盐和甲酸酯,其由于染料溶液的矿化通过光催化过程而释放。光催化染料降解的性能不变,5次重复催化循环,因此得出结论,TPPO封端的CuO纳米颗粒在串联中使用钾脱硫等合适的电子捕获剂时提供优异的光催化染料降解能力。

著录项

  • 来源
    《RSC Advances》 |2015年第54期|共9页
  • 作者

    Sharma Aarti; Dutta Raj Kumar;

  • 作者单位

    Indian Inst Technol Ctr Nanotechnol Roorkee 247667 Uttar Pradesh India;

    Indian Inst Technol Ctr Nanotechnol Roorkee 247667 Uttar Pradesh India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号