首页> 外文期刊>RSC Advances >Incorporation of PEDOT:PSS into SnO2/reduced graphene oxide nanocomposite anodes for lithium-ion batteries to achieve ultra-high capacity and cyclic stability
【24h】

Incorporation of PEDOT:PSS into SnO2/reduced graphene oxide nanocomposite anodes for lithium-ion batteries to achieve ultra-high capacity and cyclic stability

机译:将PEDOT掺入:PSS进入SNO2 /脱脂氧化物纳米复合阳极复合阳极,用于锂离子电池,以实现超高容量和循环稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

SnO2, a candidate material for anodes in Li-ion batteries (LIBs), usually suffers from severe volume change (> 300%) during charge-discharge cycles. This problem leads to undesirable continuous capacity fading, hindering its practical utilization. To address this issue, nanostructured SnO2 and its composites with carbon nanomaterials, especially graphene, have extensively been studied. Although the stability issue has improved substantially, these materials still suffer from low capacity characteristics, which are far from the theoretical capacity of SnO2. Motivated by this background, in this work, we synthesized a novel ternary nanocomposite of SnO2, reduced graphene oxide (rGO), and a conducting polymer, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), as a high performance anode material in LIBs. PEDOT:PSS together with rGO is expected to efficiently accommodate the volume change in SnO2 during cycling. Transmission electron microscopic observation reveals 2-3 nm-sized SnO2 nanoparticles are uniformly dispersed over rGO nanosheets while having a PEDOT:PSS coating. The capacities of the synthesized composites were dependent on the PEDOT:PSS concentration. The reversible capacity of the composite with 5 wt% PEDOT:PSS was maintained at 980 mA h g(-1) with a coulombic efficiency over 99% even after 160 cycles. This capacity value is equivalent to 1185 mA h g(-1) on the basis of only SnO2 in the composite. The high capacity of the ternary nanocomposites is attributed to the ultra-small size of SnO2 nanoparticles, enhanced electronic and ionic mobility, and facilitated volumetric relaxation synergistically offered by rGO nanosheets and the PEDOT:PSS coating.
机译:SnO2是锂离子电池(LIBS)中阳极的候选材料,通常在充电 - 放电循环期间遭受严重的体积变化(> 300%)。这个问题导致不期望的连续能力衰落,阻碍了其实际利用。为了解决该问题,纳米结构的SnO2及其具有碳纳米材料,尤其是石墨烯的复合材料,已经广泛地研究过。尽管稳定性问题大幅提高,但这些材料仍然遭受低容量特性,远离SnO2的理论能力。在该工作中,在这项工作中,我们合成了SnO2的新型三元纳米复合物,还原氧化石墨烯(RGO)和导电聚合物,聚(苯乙烯磺酸盐)(苯乙烯磺酸盐)(PEDOT:PSS),如下) LIBS中的高性能阳极材料。 PEDOT:PSS与RGO一起有效地在循环期间有效地适应SNO2的体积变化。透射电子显微镜观察显示2-3nm大小的SnO2纳米颗粒在具有PEDOT:PSS涂层的同时均匀地分散在RGO纳米片上。合成复合材料的容量取决于PEDOT:PSS浓度。用5wt%PEDOT的复合材料的可逆容量:PSS保持在980mA H(-1),即使在160次循环后,Coulombic效率也超过99%。该容量值相当于基于复合材料中的SNO2的1185 mA H G(-1)。三元纳米复合材料的高容量归因于超小尺寸的SnO2纳米颗粒,增强的电子和离子迁移率,并且通过RGO NanosheSs和PEDOT提供了协同纳入的体积弛豫,并且PSS涂层协同提供。

著录项

  • 来源
    《RSC Advances》 |2015年第18期|共8页
  • 作者单位

    Sungkyunkwan Univ Sch Chem Engn Suwon 440746 South Korea;

    Sungkyunkwan Univ Dept Energy Sci Suwon 440746 South Korea;

    Sungkyunkwan Univ Sch Chem Engn Suwon 440746 South Korea;

    Sungkyunkwan Univ Dept Energy Sci Suwon 440746 South Korea;

    Sungkyunkwan Univ Sch Chem Engn Suwon 440746 South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号