首页> 外文期刊>RSC Advances >Initial-stage oriented-attachment one-dimensional assembly of nanocrystals: fundamental insight with a collision-recrystallization model
【24h】

Initial-stage oriented-attachment one-dimensional assembly of nanocrystals: fundamental insight with a collision-recrystallization model

机译:纳米晶体的初始阶段取向型一维组装:对碰撞 - 再结晶模型的基本洞察力

获取原文
获取原文并翻译 | 示例
           

摘要

Oriented attachment (OA) growth has been a promising method for the synthesis of one dimensional (1D) anisotropic nanocrystals (NCs). An unresolved fundamental issue is to understand the growth mechanismat the initial stage of an OA nanorod (NR) growth. In this report, a collision-recrystallization model is proposed to investigate the initial OA growth of NRs. The repulsive electrical double layer (EDL) interaction and the attractive van der Waals (vdW) interaction at the initial OA stage are derived by the accurate surface element integration (SEI) technique and the classical Hamaker equation, respectively. Our results show that the self-recrystallization of nanochains increases the collision activation energy of NPs dramatically as their surface potentials and Hamaker constants increase. Under a specific electrolyte concentration, the collision activation energy reaches the maximum, indicating that the growth rate of OA can be controlled by adjusting the electrolyte concentration.
机译:定向附着(OA)生长是一种对合成一维(1D)各向异性纳米晶体(NCS)的合成方法。 未解决的基本问题是了解OA纳米码(NR)生长的初始阶段的增长机制。 在本报告中,提出了一种碰撞 - 再结晶模型来研究NRS的初始OA生长。 初始OA阶段的排斥电双层(EDL)相互作用和初始OA阶段的有吸引力的范德华(VDW)相互作用分别由精确的表面元素集成(SEI)技术和经典Hamaker方程来源。 我们的研究结果表明,纳上的自重结晶急剧增加了NPS的碰撞激活能量,因为它们的表面电位和哈姆沙常数增加。 在特定电解质浓度下,碰撞活化能量达到最大值,表明可以通过调节电解质浓度来控制OA的生长速率。

著录项

  • 来源
    《RSC Advances》 |2015年第67期|共8页
  • 作者单位

    Univ Elect Sci &

    Technol China Sch Energy Sci &

    Engn Chengdu 611731 Peoples R China;

    Univ Elect Sci &

    Technol China Sch Energy Sci &

    Engn Chengdu 611731 Peoples R China;

    Univ Elect Sci &

    Technol China Sch Energy Sci &

    Engn Chengdu 611731 Peoples R China;

    Univ Elect Sci &

    Technol China Sch Energy Sci &

    Engn Chengdu 611731 Peoples R China;

    Univ Elect Sci &

    Technol China Sch Energy Sci &

    Engn Chengdu 611731 Peoples R China;

    Univ Elect Sci &

    Technol China Sch Energy Sci &

    Engn Chengdu 611731 Peoples R China;

    Univ Elect Sci &

    Technol China Sch Energy Sci &

    Engn Chengdu 611731 Peoples R China;

    Univ Elect Sci &

    Technol China Sch Energy Sci &

    Engn Chengdu 611731 Peoples R China;

    Harbin Inst Technol Shenzhen Grad Sch Sch Mat Sci &

    Engn Shenzhen 518055 Peoples R China;

    Univ Cambridge Dept Mat Sci &

    Met Cambridge CB3 0FS England;

    Univ Elect Sci &

    Technol China Sch Energy Sci &

    Engn Chengdu 611731 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号