首页> 外文期刊>RSC Advances >Nanoscale phase separation in laponite-polypyrrole nanocomposites. Application to electrodes for energy storage
【24h】

Nanoscale phase separation in laponite-polypyrrole nanocomposites. Application to electrodes for energy storage

机译:纳米岩 - 聚吡咯纳米复合材料中的纳米级相分离。 应用于能量存储的电极

获取原文
获取原文并翻译 | 示例
           

摘要

Nanocomposites of the smectite clay nanomaterial laponite and the conductive polymer polypyrrole are processed from aqueous solutions using dip-coating of a substrate. With increasing polypyrrole content from 2 to 20%, evidence of phase separation at the nanoscale is obtained. Based on morphology observations, polypyrrole is thought to graft on the laponite face thus serving to glue the laponite coins face-to-face with excess polymer being rejected to the interface between the laponite nanodomains. This results in interconnecting polypyrrole nanodomains that meander throughout the film thickness towards the substrate surface. This particular nanocomposite structure is explored for supercapacitor applications because of its high surface area and the interconnecting conductive polymer phase. Supercapacitor electrodes with specific capacitances of up to 360 F g(-1), high retention rates and long-term durability are obtained. The main advantage of these new electrodes lies in their high materials efficiency because the clay material acts as support for the active polymer component that may be down-scaled to 10% with little of properties. Because processing can be achieved in aqueous solutions and temperatures below 100 degrees C are sufficient to cure the films, the electrodes are environmentally friendly and have a low carbon footprint.
机译:使用基板的浸涂,从水溶液加工蒙脱石纳米材料丙酮和导电聚合物聚吡咯的纳米复合材料。随着萘吡咯含量从2〜20%的增加,获得纳米级在纳米级分离的证据。基于形态学观察,达吡咯被认为是在达普岩面上移植,从而用来面对面地面对面地粘在丙酮纳米染色型之间的界面上面对面的面对面。这导致互连的聚吡咯纳米膜曲折在整个膜厚度朝向基板表面上弯曲。由于其高表面积和互连的导电聚合物相,因此针对超电容器应用探索了该特定纳米复合材料。具有高达360f G(-1)的特定电容的超级电容器电极,高保持率和长期耐久性。这些新电极的主要优点在于它们的高材料效率,因为粘土材料作为载体对活性聚合物组分的支持,其可能使其下缩放为10%,其特性很少。因为可以在水溶液中实现加工,并且在低于100摄氏度的温度足以固化薄膜时,电极是环保的并且具有低碳足迹。

著录项

  • 来源
    《RSC Advances》 |2015年第28期|共8页
  • 作者单位

    Univ Appl Sci Inst Mat &

    Surface Technol Kiel Germany;

    Univ Appl Sci Inst Mat &

    Surface Technol Kiel Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号